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Abstract

A fully nonlinear finite elements analysis for prediction of localization representing shear-crippling (kinkband) in-

stability in a thick laminated composite (plane strain) ring (infinitely long cylindrical shell) under applied hydrostatic

pressure is presented. The primary accomplishment of the present investigation is prediction of meso(lamina)-structure-

related equilibrium paths, which are often unstable in the presence of local imperfections and/or material nonlinearity,

and which are considered to ‘‘bifurcate’’ from the primary equilibrium paths, representing periodic buckling patterns

pertaining to global or structural level stability of the thick cross-ply ring with modal or harmonic imperfection. The

present nonlinear finite elements solution methodology, based on the total Lagrangian formulation, employs a quasi-

three-dimensional hypothesis, known as layerwise linear displacement distribution theory (LLDT) to capture the three-

dimensional interlaminar (especially, shear) deformation behavior, associated with the localized interlaminar

shear-crippling failure.

A thick laminated composite [90/0/90] imperfect (plane strain) ring is investigated with the objective of analytically

studying its premature compressive failure behavior. Numerical results suggest that interlaminar shear/normal defor-

mation (especially, the former) is primarily responsible for the appearance of a limit (maximum pressure) point on the

post-buckling equilibrium path associated with a periodic (modal or harmonic) buckling pattern, for which a modal

imperfection serves as a perturbation. Localization of the buckling pattern results from ‘‘bifurcation’’ at or near this

limit point, and can be viewed as a symmetry breaking phenomenon.

In order to investigate a localization of the buckling pattern, a local or dimple shaped imperfection superimposed on

a fixed modal one is selected. With the increase of local imperfection amplitude, the limit load (hydrostatic pressure)

decreases, and also the limit point appears at an increased normalized deflection. Additionally, the load–deflection

curves tend to flatten (near-zero slope) to an undetermined lowest pressure level, signaling the onset of ‘‘phase tran-

sition’’ in the localized region, and coexistence of two ‘‘phases’’, i.e., a highly localized band of shear crippled (kinked)
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Nomenclature

½A� diagonal matrix composed of Aitken acceleration factors

½BðkÞ
LL� linear differential operator matrix relating the linear incremental strain components to in-

cremental displacement components in the kth layer

½BðkÞ
LN� linear differential operator matrix relating the linearized incremental strain components to

incremental displacement components in the kth layer

½BðkÞ
NN� linear differential operator matrix relating the nonlinear incremental strain components to

incremental displacement components in the kth layer

b,t subscript or superscript indicating the bottom and the top surface, respectively

0Cijrs incremental elastic stiffness (material property) tensor

c characteristic constant related to local imperfections
tþDt ds differential loading surface area evaluated at the first iteration of each load step when hy-

drostatic pressure is applied
0 dV infinitesimal control volume with respect to the initial configuration

ELL, ETT,mLT longitudinal and transverse Young�s moduli, and major Poisson�s ratio, respectively, of a
unidirectional lamina

0�eeLij linear incremental component of the 6· 1 strain vector

0�eeNij linearized incremental component of the 6 · 1 strain vector

ffLg applied load vector
tþDtffLg applied load vector at the time t þ Dt

ffNg nonlinear internal force vector
tþDtffNgðiÞ nonlinear internal force vector at the ith iteration of the time step between t and t þ Dt

GLT,GTT longitudinal and transverse shear moduli, respectively

gðiÞk ðzÞ coefficient of the first fundamental differential quadratic form of a parallel surface of the ith
layer in the kth direction, k ¼ 1ðxÞ, 2ðbÞ, 3ðzÞ

�ggðiÞb coefficient of the first fundamental differential quadratic form of the bottom surface of the ith
layer in the bth direction

hi,h thickness of the ith lamina and the laminated shell, respectively

½KL� linear global stiffness matrix

½KN� nonlinear contribution to the global geometric stiffness matrix

m ratio of reference yielding stress to transverse shear modulus in Ramberg–Osgood represen-

tation

N total number of elements

NL, NS number of elements for each layer and number of layers, respectively

nðkþ1Þ unit normal vector for the top surface of the kth layer with respect to the fixed coordinate
system

ftþDtnðNSþ1Þg normal direction vector of the loaded surface ðNS þ 1Þ evaluated at the first iteration of

each load step when hydrostatic pressure is applied

Pr applied hydrostatic pressure

p uniform hydrostatic pressure

pcr classical buckling pressure of a long cylinder

½QðkÞ�, ½QðkÞ� incremental elastic stiffness (material property) matrix for the kth orthotropic and aniso-

tropic layer, respectively
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QðkÞ
ij , Q

ðkÞ
ij incremental elastic stiffness matrix components of the kth orthotropic and anisotropic layer,

respectively

f0QgðiÞ incremental displacement vector due to the applied load vector

Ri inner radius of a long perfect cylinder (plane strain ring)
tþDtR external virtual work done on a body

f0RgðiÞ incremental displacement vector due to the residual force vector

r0ðhÞ, R0ðhÞ radial coordinates of the innermost (bottom) surface of an undeformed and deformed

ring, respectively, with modal imperfection

rðhÞ, RðhÞ radial coordinates of the innermost (bottom) surface of an undeformed and deformed ring,

respectively, with combined modal/local imperfection
tþDtS loading surface area evaluated at the first iteration of each load step when hydrostatic pressure

is applied

0S
ðkÞ
ij incremental stress component of the kth layer

tþDt
0Sij second Piola–Kirchhoff stress tensor at time t þ Dt evaluated with respect to the initial con-

figuration

½t0bSSij� 9 · 9 stress matrix evaluated at time t

ft0Sijg 6 · 1 stress vector evaluated at time t

ftþDt
0S

ðkÞgði�1Þ
element stress vector of the kth layer evaluated at the ði� 1Þth iteration of each load step

t time as an index

0U
ðiÞ
bk , 0V

ðiÞ
bk incremental nodal displacement components at the kth node on the

0W
ðiÞ
bk bottom surface of the ith layer in x1(or x), x2(or b), and z directions, respectively

0U
ðiÞ
tk , 0V

ðiÞ
tk incremental nodal displacement components at the kth node on the top

0W
ðiÞ
tk surface of the ith layer in x1 (or x), x2 (or b), and z directions, respectively

tþDtfVgðiÞ total displacement vector at the ith iteration of the time step between t and t þ Dt
0Vq the qth displacement prescribed at each time step for the displacement increment method

w0,w1 amplitudes of modal and local imperfections, respectively, of a ring

x,b,z coordinates of a point inside a layer

xk global Cartesian coordinate coordinates, k ¼ 1; 2; 3
eij physical component of the Green–Lagrange strain tensor

0e
ðkÞ
ij incremental strain component of the kth layer

tþDt
0 eij total Green–Lagrangian strain tensor evaluated with respect to the initial configuration at

time t þ Dt
ef ,ec force and energy convergence criteria, respectively

ĝgki,dĝgki 9 · 1 nonlinear strain component vector and its variation, respectively

0k
ðiÞ incremental load scale factor due to the prescribed displacement component

½U� quadratic global interpolation function matrix
h angle measured from the global x3 axis
qðiÞ radius of curvature of the inner surface of the ith layer of an imperfect cylindrical shell/ring

Rij component of the incremental compliance matrix of a lamina

Wkðr; sÞ quadratic element interpolation function in terms of r and s
f radial distance of a point inside a laminated ring measured from its bottom surface
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phase and its unshear-crippled (unkinked) counterpart along the circumference of the ring. Interlaminar shear-crippling

triggered by the combined effect of imperfection, material nonlinearity and interlaminar shear/normal deformation

appears to be the dominant compressive failure mode. A three-dimensional or quasi-three-dimensional theory, such as

the afore-mentioned LLDT is essential in order to capture the meso-structure-related instability failure such as

localization of the interlaminar shear crippling, triggered by the combined presence of local imperfection and material

nonlinearity.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Advanced laminated composite materials, e.g., carbon/epoxy, carbon/PEEK, etc., are increasingly being

used in hydrospace applications. Pressure hulls of submersibles, such as those used in search and rescue

operations, e.g., in the Russian submarine, Kursk, disaster, constitute one such example. Feasibility studies

pertaining to the use of fiber-reinforced composite materials for deep submergence pressure applications

have been carried out by the US Navy since 1960s (Couch et al., 1969). The composites used in such
hydrospace applications must, by necessity, be thick-sections in order to avoid catastrophic collapse caused

by global (structural) buckling, and must sustain large hydrostatic compressive loads. Their deformation

and failure behavior (e.g., buckling/post-buckling, shear crippling, kinking, etc.) are of great concern to

marine/submersible structural designers.

Garala (1989) has carried out extensive experimental and numerical evaluations of advanced (e.g.,

carbon/epoxy) composite thick unstiffened cylindrical shell specimens, e.g., inner radius to thickness ratio,

Ri=h � 6:0, Ri � 8:89 cm (3.5 in.) and length, L � 20:32 cm (8.0 in.), subjected to external pressure loading

(Fig. 1). He has reported details of (a) fabrication methods of cylinders, (b) experimental data on collapse
pressures, strains and damage assessment, obtained using strain gages and acoustic emission (AE), and (c)

structural analyses for prediction of stresses and collapse pressures, performed using standard finite element

codes, e.g., ABACUS. The key observations can be summarized as follows: (a) the observed hoop stress

level of approximately 579 MPa (84 ksi) is considerably lower than the estimated value of 1.1 GPa (160 ksi)

based on thin-section composites experience (using the rule of mixtures with 1.655 GPa (240 ksi) insitu fiber

strength); (b) unacceptably low failure external pressure in the 83 MPa (12 ksi) range has generally been

observed with certain exceptions, as compared to the computed value of 152 MPa (22 ksi) based on the

above estimated hoop stress value; (c) a considerable amount of scatter has been observed in the test data;
and (d) fabrication defects are believed to have a detrimental effect on the compressive strength. Abdallah

et al. (1990) have conducted a series of innovative tests on thick composite rings (Fig. 2) under external

pressure, using an especially designed bladder and obtained extensive data by means of strain gages, AE,

photoelasticity and Moir�ee interferometry. In general, although the ring specimens failed at pressures 10–

25% higher than their cylindrical counterparts, made of the same material systems, almost identical failure

mechanisms are observed in both sets of specimens.

Starnes and Williams (1982) have reported a shear crippling (kinkband) type of failure to be prevalent in

0�-plies of a 48-ply laminate in the immediate vicinity of a hole as well as in a localized region of low
velocity impact damage prior to catastrophic failure under compression. It may be remarked that shear

crippling and kinkband represent the same instability phenomenon viewed at two geometrical scales: the

former at the meso-structural (lamina) level, while the latter at the micro-structural (fiber-matrix) scale.

Waas et al. (1990) have carefully monitored in real time the compressive damage initiation and propagation

in a laminated plate through holographic interferometry and photomicrography of the hole surface, and

have concluded that failure is initiated as a localized micro-buckling/kinking instability in the 0�-plies at the
hole surface followed by delamination.



Fig. 1. Localized shear-crippling failure in a thick ½902=0�k cylindrical shell tested under hydrostatic compression at NSWC, Carderock,

MD.

Fig. 2. Localized shear-crippling failure in a thick ½902=0�k ring tested under hydrostatic compression at Alliants (formerly, Hercules),

Inc., Magna, UT.
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Fig. 3. Localized fiber waviness in a thick composite cylinder shell.
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Chaudhuri (1991) has identified the formation and propagation of fiber kink bands at the microscopic

level triggered by localized defects, such as fiber misalignment (see Fig. 3 for an extreme example), formed

during the manufacturing process, leading to localized shear-crippling failures observed by Garala (1989)

and Abdallah et al. (1990) and shown in Figs. 1 and 2, to be the dominant (lowest energy) compressive
failure mode for the thick-section ½902=0�m type composite cylinders. Initial fiber misalignment, ultimate

fiber strain and the two transverse shear moduli, GLT and GTT, of the laminate, have been found to be the

key parameters, limiting the compressive strength of the afore-mentioned thick-section composite lami-

nates. Regardless of the event or sequence of events that may act as precursor(s), kink band formation,

once triggered, will, in general, be the dominant (lowest energy) failure mode, especially in the presence of

such defects as fiber waviness or misalignment, resin rich areas, etc. Numerical results for carbon/epoxy

laminates demonstrate their extreme sensitivity to initial fiber misalignment defects, which are, at least

partially, responsible for the lowering of the compressive strength of the thick cylinders tested by Garala
(1989) and the observed scatter in his test data. These theoretical results have also been experimentally

verified by Garala (1989). Various candidate sites for initiation of localized shear-crippling failures in

laminated composite structural components, experimentally observed by Garala (1989), Abdallah et al.

(1990), Starnes and Williams (1982) and others are shown in Fig. 4.

The afore-mentioned understanding of the microscopic behavior of carbon/epoxy composites not-

withstanding, some serious questions remain to be addressed. Of utmost importance is the transition or

missing link between micro-structural instability, such as kink band type failure at the fiber-matrix level (at

the geometric scale of about 10 lm) investigated by Chaudhuri et al. (1996) and others on one hand, and
macro-structural instability, such as buckling/post-buckling failure of a structural component, e.g., a ring

or cylindrical shell (at the geometric scale of at least several cm�s and larger). This transition, termed here

meso-structural instability, is identified to occur at the ply level at the geometric scale of about at a

minimum of some multiples of 130 lm (a ply thickness), and is the primary focus of the present investi-

gation. In the interest of computational efficiency, about 38 such plies are lumped together to form a model

layer in the present study, without any loss of generality of the issue at hand or of accuracy of the con-



Fig. 4. Various initiation sites for localized shear-crippling failure in laminated composite structural components.
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clusions to be drawn based on these numerical results. Of additional interest is the sensitivity of the re-
sponse of a thick composite ring (infinitely long cylindrical shell) to nonlinear material property, as well as

to geometrical defects such as dimple shaped local imperfections in addition to modal imperfections, e.g.,

out-of-roundness, which are apt to be generated during a large scale fabrication process of thick-section

laminated shells.

In this connection, it is worthwhile to mention that the compressive response of a thin ring or shell

structure is known to be primarily characterized by the stability of equilibrium at the macro-structural level.

The loss of stability of an isotropic thin shell-type structure under external pressure has been studied ex-

tensively since the pioneering work of Koiter (1945), and is relatively well understood. An important in-
gredient of Koiter�s theory is the investigation of the effect of a small imperfection whose shape is the same

as that of a classical buckling mode. More recently, Abdelmoula et al. (1992) have investigated the effect of

modal as well as local (dimple shaped) imperfections on the load carrying capacity of thin elastic isotropic

cylindrical shells subjected to external pressure. Jamal et al. (1999) have investigated the influence of lo-

calized imperfections on the elastic buckling of a long cylindrical shell (with large Batdorf parameter) under

axial compression by using a double scale analysis including interaction modes. Kim and Chaudhuri (in

review) have investigated the influence of a localized imperfection on the elastic buckling of a thin cylin-

drical shell (with large Batdorf parameter) under hydrostatic pressure using a finite element analysis with
fully nonlinear kinematic relations. Tvergaard and Needleman (1980) in relation to the compression failure

of thin metallic structures, such as an elastic column on a softening (inelastic) foundation and an elastic–

plastic plate have observed that ‘‘the final buckled configuration involves a localized buckling pattern, in

contrast with the periodic deformation pattern associated with the critical buckling mode’’, and addi-

tionally, that the applied load–deflection curve attains a maximum or limit load point. Their finite element

analysis of the elastic–plastic imperfect thin strip under axial compression shows the development of lo-

calization for the case of a low hardening material, whereas localization does not occur in the otherwise

same plate of a high hardening material for which no limit load is reached. More recently, Tvergaard and
Needleman (2000) have reexamined the post-bifurcation behavior of an axially compressed elastic–plastic

cylindrical panel, and confirmed their previous conclusion with regards to the localization of buckling

patterns reached for the afore-mentioned problems analyzed in their earlier work (Tvergaard and Nee-

dleman, 1980). A detailed review of the literature on localization of buckling pattern in elastic–plastic thin

structural elements, localization of plastic flow, including shear band formation in solids and localized

necking in biaxially stretched metal sheets, and cavitational (void growth) instabilities in elastic–plastic

solids is available in Tvergaard (1999), and will not be repeated here in the interest of brevity. For other

recent localization studies in buckling, the special issue of the journal ‘‘Chaos, Solitons and Fractals’’ (Xie,
2000) and references quoted therein may be consulted by interested readers.
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A review of the literature suggests that the emergence of meso-structure (i.e., lamina level) related in-

stability modes, such as interlaminar shear-crippling failures, experimentally observed by Starnes and

Williams (1982) and Garala (1989) has not been investigated to the extent it deserves. Therefore, the pri-

mary objective of the present investigation is to fill this analytical gap, and to identify basic meso-structure-
related mechanisms causing the afore-mentioned ‘‘premature’’ failure of the advanced composite rings

under investigation.

Chaudhuri and Kim (1997) have investigated the roles of thickness (i.e., interlaminar shear/normal

deformation) and modal imperfection in lowering the load carrying capability of an infinitely long (plane

strain) thick symmetrically laminated cross-ply [90/0/90] cylindrical shell (ring) with linear material pro-

perty. Numerical results on symmetrically laminated [90/0/90] moderately thick and thick (plane strain) rings

with modal imperfections and made of linear elastic materials show that a limit point appears on the post-

buckling equilibrium path, due to the effect of interlaminar shear deformation, significantly reducing the
load carrying capacity (e.g., 72.6% in the case of Ri=h ¼ 6:0) compared to their classical lamination theory

(CLT) based linearized buckling loads. The appearance of a limit point on the elastic post-buckling

equilibrium path is delayed as the inner radius to thickness ratio increases (i.e., as the effect of interlaminar

shear/normal deformation decreases) from 6 to 60, and finally disappears in the very thin ring case

(Ri=h ¼ 60 and beyond), which is to be expected in accordance with the CLT. As has been discussed there,

the appearance of a limit point on the elastic post-buckling equilibrium path is a measure of the effect of

interlaminar shear/normal deformation on localization. This notwithstanding, the effect of material non-

linearity combined with that of localized imperfection on the details of the localization behavior in the
context of interlaminar shear deformation at the lamina level has not been investigated, however.

In what follows, a nonlinear thick cylindrical shell finite element analysis is developed in order to obtain

the discretized system equations. The present investigation includes all the nonlinear terms in the kinematic

equations and utilizes the total Lagrangian formulation in the constitutive equations and incremental

equilibrium equations. A cylindrically curved 16-node layer-element is used, which is based on an assumed

quadratic displacement field (in surface-parallel coordinates) and the assumption of layerwise linear dis-

placements distribution through thickness (LLDT). The Newton–Raphson iteration scheme in conjunction

with Aitken acceleration is used to obtain the limit load. Beyond this load, the post-buckling behavior is
obtained by an incremental displacement control scheme rather than the usual incremental force control

scheme, when a limit point appears on the equilibrium path. In order to investigate localization of the

buckling pattern, a modal in combination with a local or dimple shaped imperfection is selected. The

combined effects of local/modal imperfections, interlaminar shear/normal deformation and nonlinear

(hypoelastic) material property for the transverse shear modulus, GTT, on the emergence of interlaminar

shear-crippling type meso-structural instability modes, related to the localization phenomenon, are inves-

tigated. The classical approach which is concerned with the periodic buckling/post-buckling pattern,

although deemed sufficient for the design of most thin elastic structures, is inadequate when it comes to
localized failures (instabilities), such as those experimentally observed by Garala (1989) and Abdallah et al.

(1990).
2. Three-dimensional kinematic relations for a thick imperfect cylindrical shell

Fig. 5 shows the schematic of a laminated cylindrical shell. Invoking the theory of parallel surfaces, the

coefficients of the first fundamental differential quadratic form of a surface inside the ith layer of a lami-
nated imperfect cylindrical shell can be written in terms of their bottom surface counterparts as follows:
gðiÞx ðzÞ ¼ 1; gðiÞb ðzÞ ¼ �ggðiÞb 1

�
þ z
qðiÞ

�
; gðiÞz ðzÞ ¼ 1: ð1Þ



Fig. 5. Geometry of a laminated cylindrical shell (infinitesimal) element.
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The components of the engineering nonlinear strain in terms of the physical components of the displace-

ment vector at an arbitrary point inside the ith layer are obtained as follows:
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3. Linearized equations of motion and the method of virtual work

The second Piola–Kirchhoff stress tensor is conjugate to the Green–Lagrange strain tensor in that their

properties are also invariant under rigid body motions. When the equilibrium of the body at time t þ Dt is
first expressed using the principle of virtual displacements with tensor notation, the total Lagrangian

formulation requires that
Z
0V

tþDt
0 Sij d

tþDt
0 �eeij

0 dV ¼ tþDtR; ð4Þ
where the tþDt
0 Sij and tþDt

0 eij are the Cartesian components of the second Piola–Kirchhoff stress tensor and

the total Green–Lagrange strain tensor defined at time t þ Dt, respectively, referred to the initial configu-

ration, while tþDtR represents the external virtual work. Furthermore,
tþDt
0 Sij ¼ t

0Sij þ 0Sij ð5Þ
and
tþDt
0 �eeij ¼ t

0�eeij þ 0�eeij; 0�eeij ¼ 0�eeij þ 0�ggij; ð6a; bÞ
where t
0Sij and 0Sij represent components of the second Piola–Kirchhoff stress tensor defined at time t, and

the incremental components of the same during the subsequent time step Dt, respectively, both referred to

the initial configuration. The quantities 0�eeij and 0�ggij in Eq. (6b) denote the linear and the nonlinear in-

cremental strains, respectively, that are referred to the initial configuration. The linear strain vector f0�eeijg is

here resolved into two parts that are the pure linear part f0�eeLijg, and the linearized part f0�eeNij g. The incre-

mental constitutive relation, which relates the components of incremental stress and incremental strain both
referred to the initial configuration, is given by
0Sij ¼ 0Cijrs 0�eers ð7Þ
in which 0Cijrs is the incremental elastic stiffness (material property) tensor, referred to the initial configu-

ration and represented as ½Q� in matrix notation (see Appendix A and also refer to Fig. 6). Substitution of
Fig. 6. Definition of parameters in Ramberg–Osgood representation of stress–strain curves.
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Eqs. (5)–(7) into the left hand side of Eq. (4) finally yields the equations needed for the finite element

formulation. The details are available in Chaudhuri and Kim (1997).

Because the variation in the strain components is equivalent to the virtual strains, the right hand side of

Eq. (4) is the virtual work done when the body is subjected to a virtual displacement at time t þ Dt. The
corresponding virtual work is given by
tþDtR ¼
Z

tþDtS

tþDtf S
i dv

S
i
tþDtdS; ð8aÞ
where the tþDtf S
i is the surface force vectors applied on the surface S at time t þ Dt, and d0vSi is the ith

component of the incremental virtual displacement vector evaluated on the loaded surface. When the

hydrostatic pressure is applied, the loading-path is always deformation-dependent, which requires that the
load vector should be evaluated at the current configuration. The external virtual work can, however, be

approximated to sufficient accuracy using the intensity of loading corresponding to time t þ Dt, integrated
over the surface area, tþDtSðk�1Þ calculated at the ðk � 1Þth iteration (see Section 5) as follows:
tþDtR ¼
Z

tþDtSðk�1Þ

tþDtf S
i d0v

S
i
tþDtdS: ð8bÞ
4. Isoparametric finite element discretization

In this section, a general nonlinear displacement-based finite element formulation is presented. The basic
steps in the derivation of finite element equations are to select the interpolation functions of the dis-

placements and the element coordinates. Because the new element coordinates are obtained by adding the

element displacements to the original coordinates in the incremental analysis, the same interpolations can

be employed for the displacements and coordinates. In the present study, 16-node quadrilateral elements

(Fig. 7) are employed because of their computational efficiency, as compared to their lower-order linear

counterparts, which are too stiff to model the shear deformation of each lamina in the laminate. The details

are available in Chaudhuri and Kim (1997), and are, therefore, omitted here in the interest of brevity of

presentation.
On computing the left and right sides of Eqs. (4) and (8) as sums of integrals over the volume and areas

of all finite elements, followed by equating them, and incorporating the boundary conditions, the principle

of virtual displacement, in conjunction with the total Lagrangian formulation, is invoked to obtain the

incremental equations of motion as follows:
½KL�f0Vg þ ½KN�f0Vg ¼ ffLg � ffNg; ð9Þ
Fig. 7. A 16-node curvilinear side surface-parallel quadratic isoparametric cylindrical shell element.
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where
½KL� ¼
XNL

m¼1

XNS

k¼1

Z
SðmÞ

Z hk

hk�1

ð½BðkÞ
LL�½T

ðkÞ
BT �½U�Þ

T½QðkÞ�½BðkÞ
LL�½T

ðkÞ
BT �½U�qðkÞ dzdS; ð10aÞ

½KN� ¼ 2
XNL

m¼1

XNS

k¼1

Z
SðmÞ

Z hk

hk�1

ð½BðkÞ
LL�½T

ðkÞ
BT �½U�Þ

T½QðkÞ�½BðkÞ
LN�½T

ðkÞ
BT �½U�qðkÞ dzdS

þ
XNL

m¼1

XNS

k¼1

Z
SðmÞ

Z hk

hk�1

ð½BðkÞ
LN�½T

ðkÞ
BT �½U�Þ

T½QðkÞ�½BðkÞ
LN�½T

ðkÞ
BT �½U�qðkÞ dzdS

þ
XNL

m¼1

XNS

k¼1

Z
SðmÞ

Z hk

hk�1

ð½BðkÞ
NN�½T

ðkÞ
BT �½U�Þ

T½t0bSS ðkÞ�½BðkÞ
NN�½T

ðkÞ
BT �½U�qðkÞ dzdS; ð10bÞ

ffLg ¼
XNL

m¼1

Z
SðmÞ

ð½BðNSÞ
LL �½T ðNSÞ

BT �½U�ÞT nNSþ1

0

� �
PrqðNSþ1Þ dS; ð11aÞ

ffNg ¼
XNL

m¼1

XNS

k¼1

Z
SðmÞ

Z hk

hk�1

ð½BðkÞ
LL�½T

ðkÞ
BT �½U�Þ

Tft0S
ðkÞgqðkÞ dzdS ð11bÞ
and
f0VgT ¼ f0U ð1Þ
b1 � �0U ð1Þ

b8 0V
ð1Þ
b1 � �0V ð1Þ

b8 0W
ð1Þ
b1 � �0W ð1Þ

b8 0U
ð1Þ
t1 � �0U ð1Þ

t8 0V
ð1Þ
t1 � �0V ð1Þ

t8 0W
ð1Þ
t1 � �0W ð1Þ

t8 0U
ðiÞ
b1

� �0U ðiÞ
b8 0V

ðiÞ
b1 � �0V ðiÞ

b8 0W
ðiÞ
b1 � �0W ðiÞ

b8 0U
ðiÞ
t1 � �0U ðiÞ

t8 0V
ðiÞ
t1 � �0V ðiÞ

t8 0W
ðiÞ
t1 � �0W ðiÞ

t8 0U
ðNÞ
b1

� �0U ðNÞ
b8 0V

ðNÞ
b1 � �0V ðNÞ

b8 0W
ðNÞ
b1 � �0W ðNÞ

b8 0U
ðNÞ
t1 � �0U ðNÞ

t8 0V
ðNÞ
t1 � �0V ðNÞ

t8 0W
ðNÞ
t1 � �0W ðNÞ

t8 g: ð12Þ

It may be noted that the total number of elements, N equals NL � NS.
5. Iterative solution strategy

Because the nodal point forces at time t þ Dt depend nonlinearly on the nodal point displacements, it is
necessary to iterate for obtaining a reasonably accurate solution of Eq. (9). The most frequently used ite-

ration scheme for solutions of nonlinear finite element equations is the Newton–Raphson iteration because

reformations and triangularizations of stiffness matrices at selective load and iteration steps are more

computationally efficient without a significant loss of accuracy. In the Newton–Raphson method, only the

stress force vector (i.e., the right hand side of Eq. (9)) is modified without changing the stiffness matrix after

each iteration of a certain load step, and the following algorithm for solving Eq. (9) is developed:
ð½KL� þ t½KN�Þf0VgðiÞ ¼ tþDtffLg � tþDtffNgði�1Þ
; ð13Þ

tþDtfVgðiÞ ¼ tþDtfVgði�1Þ þ ½A�ðiÞf0VgðiÞ; ð14Þ

with the initial conditions tþDtffNgð0Þ ¼ tffNg, and tþDtfVgð0Þ ¼ tfVg, where the index i denotes the number

of iterations performed in a certain time step Dt. The subscripts �L� and �N� denote the linear and the

nonlinear components evaluated at the time t, while the diagonal matrix ½A� is Aitken acceleration factor to

increase the convergence rate. Eq. (13) is the computational equivalent of Eq. (9). Furthermore, in the

computer program, the process of the assemblage for the total stiffness matrix can be divided into two
groups: the first group contains linear elements, where the stiffness matrices of each individual element are

only calculated at the first load step and remain unchanged during whole loading process. The second one
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refers to the nonlinear elements where nonlinear stiffness matrices of the element can be evaluated at the

first iteration of each load step with nonlinear force vectors being evaluated at each iteration of every load

step using the contributions of current displacements or stresses. The applied force and the stress force

vectors (i.e., tþDtffLg and tþDtffNgði�1Þ
in Eq. (13)) are calculated according to Eq. (11) as follows:
tþDtffLg ¼
XNL

m¼1

Z
SðmÞ

ð½tþDtBðNSÞ
LL �½tþDtT ðNSÞ

BT �½U�ÞT
tþDtnðNSþ1Þ

0

� �
PrqðNSþ1Þ tþDtdS ð15Þ
and
tþDtffNgði�1Þ ¼
XNL

m¼1

XNS

k¼1

Z
SðmÞ

Z hk

hk�1

ð½tþDtBðkÞ
LL�

ði�1Þ½tþDtT ðkÞ
BT �

ði�1Þ½U�ÞTftþDt
0 S

ðkÞgði�1ÞqðkÞ dzdS ð16Þ
in which ½tþDtBðkÞ
LL�

ði�1Þ½tþDtT ðkÞ
BT �

ði�1Þ
is a linear differential operator of the kth layer evaluated at ði� 1Þth ite-

ration of each load step. The 6 · 1 element stress vector ftþDt
0 S

ðkÞgði�1Þ
can be calculated by generalizing the

linear elastic relations, ftþDt
0 S

ðkÞgði�1Þ ¼ ½t0Q
ðkÞ�ði�1ÞftþDt

0 �eeðkÞgði�1Þ
(Hooke�s law in infinitesimal displacement

conditions) for the linear material because the second Piola–Kirchhoff stress and Green–Lagrangian strain

tensors are invariant under rigid body motions in large displacement and rotation. In the case of a non-

linear elastic material, the element stress vector ftþDt
0 S

ðkÞgði�1Þ
can be simply evaluated by subsequently

adding incremental stresses at each iteration to stresses calculated at the first iteration of the current load

step and denoted by
ftþDt
0 S

ðkÞgði�1Þ ¼ ft0S
ðkÞgð0Þ þ

Xi�1

j¼1

fDSðkÞgðjÞ; ð17Þ
where ft0S
ðkÞgð0Þ is the total second Piola–Kirchhoff stress vector in an element of the kth layer at time t, and

fDSðkÞgðjÞ is the incremental stress vector created during the jth iteration. The first term on the right hand
side of Eq. (17) is equivalent to its counterpart in Eq. (5). Furthermore, the incremental stress can be

denoted by
fDSðkÞgðjÞ ¼ ½t0Q
ðkÞ�ðjÞfD�eeðkÞgðjÞ; ð18Þ
where ½t0Q
ðkÞ�ðjÞ and fD�eeðkÞgðjÞ are tangent modulus matrix at the current load step and incremental strain

components generated during the jth iteration, respectively. It may be noted that the same procedure can be

applied to evaluate the 9 · 9 element stress matrix ½t0bSS ðkÞ� that appears in the nonlinear stiffness matrix of Eq.

(10b).

In actual computer programming, the active columns and the addresses of the diagonal elements of the

total stiffness matrix are stored effectively in an one-dimensional array, and an effective subroutine COL-

SOL (active column solver) is used to finally obtain the incremental displacement for the unbalanced force,
tþDtDRði�1Þ ¼ tþDtffLg � tþDtffNgði�1Þ

in the ði� 1Þth iteration. The iteration is continued until the out-of-

balance load vector and the displacement increments are sufficiently small, i.e., the iteration scheme is
terminated at the current load step and moves to the next load step, when the force convergence criterion,
ktþDtffLg � tþDtffNgðiÞk
ktþDtffLg � tffLgk

< ef ð19aÞ
and the energy convergence criterion,
f0VgðiÞT ðtþDtffLg � tþDtffNgði�1ÞÞ
f0Vgð1ÞT ðtþDtffLg � tffLgÞ

< ee ð19bÞ
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are simultaneously satisfied, where ef and ee are preset force and energy tolerances, while k � k denotes the

Euclidean norm of the column vector. The Newton–Raphson method with a relatively large value of the

load increment requires a number of iterations in the nonlinear regime. Otherwise, it may introduce serious

errors and, indeed, diverge from the exact solution. Therefore, a rather small load increment would be
necessary in the nonlinear regime. It may, however, be noted that the larger value of load increment is

recommended, with a specified accuracy, for the linear regime, in the interest of computational efficiency.

The prediction of nonlinear structural behavior by the Newton–Raphson method is successfully

achieved before the critical (limit) point of the solution, because the residual force vector and the gradient

of the total system matrix do not change in sign drastically; i.e., physically, the total stiffness matrix

monotonically decreases in the present investigation as the applied load is increased up to the limit load. In

practice, during the solution process of the system, the stiffness matrix may approach singularity at the

critical point, in which case the Newton-type method generally fails to give satisfactory results because of
the multiple admissible solutions for a single value of load. It is necessary to modify the standard form of

the Newton-type method, if it is employed to trace the post-buckling solution. The technique necessary to

modify this method, based on displacement increment, is therefore employed beyond the critical (limit)

point, which is shown to be efficient and reliable. The details of this important procedure are presented in

Appendix C.
6. Results and discussion

Before undertaking investigations on meso-structure-related instability problems, a class of simpler

macrostructural deformation and instability problems (e.g., isotropic and two layer [0/90] cylindrical panels

with linear material property) had earlier been investigated to check the accuracy of the present theoretical

development and the resulting finite element code, Nonlinear Laminated Shell Analysis with Meso-struc-

ture Program (NLSAMP). The issues of validity of the present LLDT based nonlinear incremental for-

mulation (developed earlier), and assessment of the convergence characteristics of the present 16 node layer

element were addressed for shallow homogeneous isotropic and cross-ply [0/90] panels in the absence of
imperfections. Also addressed was the issue of accuracy of the von Karman nonlinear strain assumption

which was found to overestimate transverse displacements in the advanced nonlinear regime. The results of

these studies are available in Hsia and Chaudhuri (1996), Kim and Chaudhuri (1995), and Chaudhuri and

Hsia (1998, 1999), and hence will not be repeated here in the interest of brevity.

Example: A thick symmetrically laminated cross-ply [90/0/90] (plane strain) ring (infinitely long cylindrical

shell)

This study primarily addresses the problem of nonlinear (both geometric and material) post-buckling

behavior of a thick symmetrically laminated cross-ply [90/0/90] (plane strain) ring (infinitely long cylindrical

shell). First, the effect of a modal imperfection on the response of the laminated ring is presented (Chau-

dhuri and Kim, 1997), which serves as a baseline solution for comparison with that of a combined local and

modal imperfection. A modal or harmonic imperfection is generally given by
r0ðhÞ ¼ Ri � W0 cos
Rih
qc

� �
; ð20Þ
where r0ðhÞ is the distance from the central axis of the perfect cylinder/ring to the inner surface of the

imperfect cylinder/ring, and qc is the wavelength of a classical buckling mode in the circumferential

direction. For mode 2 of classical buckling of a ring (see Fig. 8(b)), Eq. (20) reduces to
r0ðhÞ ¼ Ri � W0 cosð2hÞ: ð21Þ



Fig. 8. Shape of a ring with (a) combined local/modal and (b) only modal imperfection.

Fig. 9. Nomenclature and geometry of a (plane strain) [90/0/90] ring with a combined modal/local imperfection.
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The geometry of the inner surface of a laminated ring with a modal imperfection, is described in detail in
Fig. 8(b), while Fig. 8(a) depicts the same with combined local/modal imperfections. The inner radius ðRiÞ
and thickness (h) of the [90/0/90] cross-ply (plane strain) ring are 8.89 cm (3.5 in.) and 1.48 cm (0.583 in.),

respectively. The three-layer ring geometry with combined local/modal imperfections, of which the modal

imperfection is a special case, is described in detail in Fig. 9.

Fiber orientation angles 90� and 0� represent the hoop and axial directions, respectively, of the cylinder/

ring. The orthotropic lamina material properties for a Narmco 5605 graphite-epoxy composite under

compression are as follows (see Appendix C, Jones, 1998):
ELL ¼ 124:11 GPa ð18:0 MsiÞ; ETT ¼ 10:69 GPa ð1:55 MsiÞ; mLT ¼ 0:575;

GLT ¼ 5:86 GPa ð0:85 MsiÞ; GTT ¼ 3:10 GPa ð0:45 MsiÞ:



Fig. 10. Finite element model of a [90/0/90] cylindrical ring.
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The finite element model of a quarter of the plane strain (perfect) ring along with the prescribed boundary

conditions is presented in Fig. 10, the imperfect ones being similar with progressively more refined mesh

toward and in the vicinity of the localized dimple (not shown here). Double symmetry conditions permit

every model under consideration to be limited to only a quarter of the ring such that the corresponding
surface-parallel displacements vanish along the center lines and the buckled shapes are assumed to be

symmetric. As a result, a cylinder geometry with plane strain constraint has been chosen in the present

investigation, which has, in the absence of any geometric imperfection, an inner surface radius qð1Þ ¼ Ri.

Because the loading and geometric symmetries are assumed, boundary conditions on the surfaces in Fig. 10

can be prescribed as follows:

Geometric symmetry
on the surfaces ABFE and CDHG : 0vðx; 0; fÞ ¼ 0 and 0vðx; p=2; fÞ ¼ 0; ð22aÞ
on the surface EHGF : 0uð0; b; fÞ ¼ 0: ð22bÞ
Loading symmetry
Traction force on the surface BCGF : f S
i ¼ pðx; b; qðNSþ1ÞÞnðNSþ1Þ

i : ð23Þ
The plane strain condition in the three-dimensional model is obtained by applying the displacement con-

straints as shown below:
0u
ðiÞ
1 ¼ 0u

ðiÞ
2 ¼ 0u

ðiÞ
3 ¼ 0u

ðiÞ
4 ¼ 0u

ðiÞ
5 ¼ 0u

ðiÞ
6 ¼ 0u

ðiÞ
7 ¼ 0u

ðiÞ
8 ¼ 0u

ðiÞ
9 ¼ 0u

ðiÞ
10 ¼ 0u

ðiÞ
11 ¼ 0u

ðiÞ
12 ¼ 0u

ðiÞ
13 ¼ 0u

ðiÞ
14

¼ 0u
ðiÞ
15 ¼ 0u

ðiÞ
16 ¼ 0; ð24aÞ
0v
ðiÞ
1 ¼ 0v

ðiÞ
2 ¼ 0v

ðiÞ
5 ; 0v

ðiÞ
9 ¼ 0v

ðiÞ
10 ¼ 0v

ðiÞ
13 ; 0v

ðiÞ
3 ¼ 0v

ðiÞ
4 ¼ 0v

ðiÞ
7 ; 0v

ðiÞ
11 ¼ 0v

ðiÞ
12 ¼ 0v

ðiÞ
15 ; 0v

ðiÞ
6 ¼ 0v

ðiÞ
8 ;

0v
ðiÞ
14 ¼ 0v

ðiÞ
16 ; ð24bÞ
0w
ðiÞ
1 ¼ 0w

ðiÞ
2 ¼ 0w

ðiÞ
5 ; 0w

ðiÞ
9 ¼ 0w

ðiÞ
10 ¼ 0w

ðiÞ
13 ; 0w

ðiÞ
3 ¼ 0w

ðiÞ
4 ¼ 0w

ðiÞ
7 ; 0w

ðiÞ
11 ¼ 0w

ðiÞ
12 ¼ 0w

ðiÞ
15 ; 0w

ðiÞ
6 ¼ 0w

ðiÞ
8 ;

0w
ðiÞ
14 ¼ 0w

ðiÞ
16 ; ð24cÞ
where the superscript, i, denotes element number.
Fig. 11 shows a plot of p�, the hydrostatic pressure, p, normalized by classical buckling pressure of its

perfect counterpart, pcr, versus the normalized displacement, w� ¼ �w=ðRi � w0Þ at h ¼ 0�, of the thick



Fig. 11. Computed equilibrium paths of a thick ðRi=h ¼ 6Þ composite [90/0/90] ring with only modal imperfection ðw0 ¼ 0:005RiÞ.
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[90/0/90] ring (Ri=h ¼ 6, w0 ¼ 0:005Ri and linear material property). This plot is the same as Fig. 13 from
Chaudhuri and Kim (1997), the ordinate axis of which was labeled wrong, which is corrected here.

Fig. 12(a) exhibits the variation of the normalized radial distance of the deformed inner surface,

R�
0ðhÞ ¼ R0ðhÞðRi � w0Þ, measured from the center of the ring during the initial pressurization process with

p�� ¼ p=pmax in the range of 0–0.3157, which corresponds to the rising branch of the pressure–deflection

curve of Fig. 11. Fig. 13(a) exhibits the same variation just before and at the time maximum pressure is

reached, i.e., p�� being in the range of 0.9914–1.0, which corresponds to the peak of the pressure–deflection

curve of Fig. 11, while Fig. 14(a) displays the same for the falling (unphysical) branch. Figs. 12(b), 13(b)

and 14(b) show through the thickness distribution of the circumferential displacement at three locations,
h ¼ 9�, 45� and 81�, respectively, along the circumferential direction of the same ring. At the initial stage of

loading, the maximum transverse deflection variation with the increase of load occurs around h ¼ 0�, while
the corresponding nodal line of the deformed shape is maintained at h ¼ 90� (Fig. 12(a)) in the case of the

thick cross-ply ring under investigation, which is in marked contrast with what happens in the case of a thin

cylindrical long shell (plane string ring), where the nodal line is located at h ¼ 45�. This result implies that

the thick [90/0/90] ring is susceptible to deform locally even in the presence of a modal imperfection, e.g.,

out-of-roundness. On the other hand, the undeformed normal of each section located at h ¼ 9�, 45� and 81�
along the circumferential direction of the thick [90/0/90] ring remains after deformation more or less
Fig. 12. Displacement patterns (rising pressure) of a thick composite [90/0/90] ring along the circumferential direction (Ri=h ¼ 6:0,

w0 ¼ 0:005Ri, linear elastic material): (a) normalized radial coordinate vs. angle and (b) normalized circumferential displacements vs.

angle.



Fig. 13. Displacement patterns (near peak pressure) of a thick composite [90/0/90] ring along the circumferential direction (Ri=h ¼ 6:0,

w0 ¼ 0:005Ri, linear elastic material): (a) normalized radial coordinate vs. angle and (b) normalized circumferential displacements vs.

angle.

Fig. 14. Displacement patterns (falling pressure) of a thick composite [90/0/90] ring along the circumferential direction (Ri=h ¼ 6:0,

w0 ¼ 0:005Ri, linear elastic material): (a) normalized radial coordinate vs. angle and (b) normalized circumferential displacements vs.

angle.
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straight through the thickness as the applied hydrostatic pressure is increased (Fig. 12(b)). As the maximum

pressure is reached, the nodal line travels from h ¼ 90� up to h ¼ 50�, while the transverse deflection at

h ¼ 90� starts to increase slightly with the increase of the load (Fig. 13(a)). It is also evident from Fig. 13(b)

that the undeformed normal of each layer deforms linearly as before except around h ¼ 81�. Finally, the
nodal line does not move further and both the sections, h ¼ 0� and h ¼ 90� deflects in the opposite
directions up to the ultimate point of the pressure–displacement plot (Fig. 14(a)). It is also seen that the first-

order shear deformation theory (FSDT) appears to be adequate to predict an accurate load–displacement

solution of the cross-ply composite (plane strain) ring with modal or harmonic imperfection and of linear

material property, because the circumferential displacement variation through the thickness remains more

or less linear during the whole loading process.

It may be noted that the computed deformed shapes of the composite [90/0/90] ring in the radial

direction shown in Figs. 12–14 earlier for different hydrostatic pressures (where the normalization with

respect to the maximum pressure, pmax, is used) reveal an absence of shear-crippling type post-bifurcation
localization of the deformation pattern, which will require additional consideration. Tvergaard and Nee-

dleman (1980, 2000) have studied the post-bifurcation localization process by introducing a small localized
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imperfection superimposed upon the modal type of imperfection. The initiation of the shear-crippling

process in a thick cross-ply ring is then a consequence of the occurrence of the limit (maximum) point in the

pressure (force)-deflection curve. Segments along the circumference of the ring, which are slightly weaker

than the rest, attain the maximum first and shear-cripple or kink under falling pressure, while the remainder
of the ring ‘‘unloads’’ without shear crippling.

For the purpose of illustration, the afore-mentioned weakening effect is represented by the presence of

two symmetrically placed dimple type of imperfections superimposed upon the modal type imperfection

shown in Fig. 8(a) in a manner similar to Tvergaard and Needleman (1980, 2000). The initial imperfections

under consideration have (a) local shapes as well as (b) idealized modal shapes corresponding to classical

buckling modes for a ring. The radial coordinate of a ring with local imperfections is described as follows:
Table

Materi

Lay

a ¼
a ¼

Materi
rðhÞ ¼ Ri � w0

"
þ w1 exp

(
� Rih

c

� �2
)#

cos
Rih
qc

� �
; ð25Þ
where rðhÞ is the distance from the central axis of the corresponding perfect cylinder/ring to the inner

surface of the imperfect ring with combined modal and local imperfections, while w1 represents the am-
plitude and c is the extent of the local imperfection. For mode 2 of classical buckling of a ring (see Figs. 8(a)

and 9), Eq. (25) reduces to
rðhÞ ¼ Ri � w0

"
þ w1 exp

(
� Rih

c

� �2
)#

cosð2hÞ: ð26Þ
It may be noted that the idealized modal imperfections, given above by Eqs. (20) and (21) can be obtained

through substitution of w1 ¼ 0 and/or c ¼ 0 in Eqs. (25) and (26), respectively. The arc length c and modal

imperfection amplitude, w0, are kept here constants at 2.54 cm (1 in.) and 0:005Ri, respectively.

The next set of results is concerned with the effect of material nonlinearity on the post-buckling and post-

yield response of the cross-ply [90/0/90] (plane strain) thick ring. Layer material lay-up is given in Table 1,

while the material nonlinearity is as shown in Fig. 15(a) and (b), providing nonlinear elastic property
corresponding to transverse shear modulus, GTT. Since a fiber-reinforced composite lamina is transversely

isotropic, the plane of isotropy being in the plane transverse to the fiber direction, this property is largely

matrix dominated. The material nonlinearity pertaining to GTT in graphite/epoxy and other composites,

therefore, appears to be nonlinear elastic (hypoelastic), with little residual strain observed. This nonlinearity

is described by setting the reference stress, SRjj ¼ mGTT (see Appendix A for definition), j ¼ 4 (no sum on j)
for a unidirectional (0�) lamina.

Fig. 16 shows the effect of normalized local imperfection, w�� ¼ w1=Ri, on the post-buckling behavior of

a thick [90/0/90] composite ring with a fixed modal imperfection ðw0 ¼ 0:005RiÞ and material nonlinearity
(m ¼ 0:03, n ¼ 3:0). The plots for the corresponding linear elastic material case ðm ¼ 1Þ due to Kim and

Chaudhuri (in review) are also shown here (by dashed lines) for the purpose of comparison. Each p� ¼ p=pcr
vs. w� ¼ �w=ðRi � w0Þ at h ¼ 0� plot exhibits a limit point beyond which the equilibrium path is unstable.

The curve corresponding to w1 ¼ 0 (and/or c ¼ 0) represents nonlocalized solution, and is associated with

the periodicity of the classical (modal or harmonic) buckling pattern. It can be clearly seen from these plots
1

al lay-up definitions of a laminated composite cylindrical shell

-up Exx Ehh Eff Gxh Gxf Ghf

0� ELL ETT ETT GLT GLT GTT

90� ETT ELL ETT GLT GTT GLT

al data with respect to the global coordinate ðx; h; fÞ for different lay-ups.



Fig. 15. Nomenclature and property definitions of the nonlinear composite material: (a) GTT curve for different m ¼ SR=GTT) with n
fixed and (b) GTT curve for different n with m fixed.

Fig. 16. Effect of local imperfection on the post-buckling behavior of a thick [90/0/90] ring (Ri=h ¼ 6:0, w0 ¼ 0:005Ri) nonlinear (––)

shear modulus, GTT (m ¼ 0:03, n ¼ 3:0) and comparison with its linear (- - -) counterpart.
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that material nonlinearity has a pronounced effect in lowering the maximum load carrying capacity of the
thick composite ring under investigation along with the amplitude of local imperfection. For example, the

load carrying capacity reduces down to 51.7% in the case of w�� ¼ 0:005 compared to the CLT based

linearized buckling load of the perfect cylinder. This result qualitatively explains the unacceptably low

failure external pressure for thick ðRi=h ¼ 6Þ ½902=0�m, m � 38, cylindrical shells in the 83 MPa (12 ksi)

range, that has experimentally been observed by Garala (1989), as compared to the computed value of 152

MPa (22 ksi). More quantitatively accurate comparison will require a massive computational effort in-

volving 114 layers, the actual modeling of the entire length of a laminated cylinder with statistically dis-

tributed local imperfections of fiber misalignments, resin rich areas, etc. over and above those pertaining to
the geometry considered here, which is beyond the scope of the present study.

With the increase of local imperfection amplitude, the limit load (hydrostatic pressure) decreases, and

also the limit point appears at an increased normalized deflection (Fig. 16). Additionally, the pressure–

deflection curves rise and decay more slowly. These curves tend to flatten to an undetermined lowest

pressure level, signaling even more rapid (compared to the linear elastic material case) onset of phase

transition in the localized region, and coexistence of two phases, i.e., a highly localized band of shear

crippled or kinked phase and its un-shear-crippled (unkinked) counterpart along the circumference of the

ring.
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Fig. 17(a) exhibits the variation of the normalized radial distance of the deformed inner surface,

R�ðhÞ ¼ RðhÞ=ðRi � w0Þ, measured from the center of the thick cross-ply ring (Ri=h ¼ 6:0, w0 ¼ 0:005Ri,

m ¼ 0:03, n ¼ 3:0) during the initial pressurization process with p�� ¼ p=pmax being in the range of 0–0.3457,

which corresponds to the rising branch of the pressure–deflection curve of Fig. 16. Fig. 18(a) exhibits the
same variation just before and at the time maximum pressure is reached, i.e., p�� being in the range of

0.9102–1.0, which corresponds to the peak of the pressure–deflection curve of Fig. 16, while Fig. 19(a)

displays the same for the unphysical falling branch. It is further observed from Fig. 17(b) that the inter-

laminar shear angle changes drastically from layer to layer through the thickness in a local region ranging

from h ¼ 0� to h ¼ 9� in the initial loading stage, e.g., p�� ¼ p=pmax ¼ 0:0977. This phenomenon suggests

that formation of shear-crippling triggered by the combined effect of material nonlinearity and local im-

perfection at the meso-structural (i.e., lamina) level may be the dominant compressive failure mode for a

thick section composite ring, long before the occurrence of global or structural instability failure with an
associated periodic buckling pattern. A very low yielding stress or large local imperfection may be expected

to lead to this failure mode. As can be seen in Figs. 16, 17(a) and 18(a), the hydrostatic pressure continues
Fig. 17. Displacement patterns (rising pressure) of a thick [90/0/90] ring (Ri=h ¼ 6:0, w0 ¼ 0:005Ri) with nonlinear shear modulus, GTT

(m ¼ 0:03, n ¼ 3:0) along the circumferential direction: (a) normalized radial coordinate vs. angle and (b) normalized circumferential

displacement at three different angles.

Fig. 18. Displacement patterns (near peak pressure) of a thick [90/0/90] ring (Ri=h ¼ 6:0, w0 ¼ 0:005Ri) with nonlinear shear modulus,

GTT (m ¼ 0:03, n ¼ 3:0) along the circumferential direction: (a) normalized radial coordinate vs. angle and (b) normalized circum-

ferential displacement at three different angles.



Fig. 19. Displacement patterns (falling pressure) of a thick [90/0/90] ring (Ri=h ¼ 6:0, w0 ¼ 0:005Ri) with nonlinear shear modulus, GTT

(m ¼ 0:03, n ¼ 3:0) along the circumferential direction: (a) normalized radial coordinate vs. angle and (b) normalized circumferential

displacement at three different angles.
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to increase with displacement and reaches the theoretical maximum point ðpmaxÞ. When the pressure reaches

its theoretical maximum point, the transverse deflection nodal line shifts to h ¼ 50� (approx.), while the

layerwise variation of shear angle through thickness that results in shear-crippling pattern of circumfer-

ential displacement as well as dimple patterns of transverse deflection tends to delocalize or spread out

along the circumferential direction (Fig. 18(a) and (b)). This trend toward delocalization continues well

after the limit points (Fig. 19(a) and (b)) in the falling (non-physical) branches of the pressure–deflection
curves of Fig. 16.

In this connection, it may be worthwhile to mention that the theoretical limit point pressure, pmax, is

unattainable, because of the existence of an unstable equilibrium path that follows the limit point, and

which, as has been discussed earlier, results from the combined effect of local imperfection and/or material

nonlinearity. Consequently, it will switch to a localization mode, which is compatible with meso-structural

level deformation mode or pattern, followed by an approach to the onset of phase transition with a sig-

nificant drop of the load carrying capacity of the composite [90/0/90] ring under investigation. In analogy to

phase transition phenomena such as condensation of gases, the melting of solids, phenomena of ferro-
magnetism and antiferromagnetism, the famous family of lambda-transitions––e.g., order-disorder tran-

sitions in alloys, the transition from liquid He I to liquid He II (superfluidity of liquid helium at low

temperatures) or the transition from a normal to a superconducting material (superconductivity of metal at

low temperatures) and so on (Pathria, 1977) studied in condensed matter physics, this represents a long

range order (of nonlocal or gage theories) that is intimately connected with spontaneous symmetry

breaking. For example, there is a long range order in the ferromagnet––all the spins are lined up in the same

direction, resulting in spontaneous breaking of rotational invariance (Mattuck, 1976; Zee, 1995). In the

example problem studied here, localization of the deformation pattern is associated with spontaneous
breaking of the periodicity of classical (modal or harmonic) buckling patterns.

A qualitative understanding of the initiation of the shear-crippling (kink band) process can be obtained

by considering the relation of applied pressure acting upon a circumferential arc of half-length c, repre-
senting a local imperfection region, of a cylindrical section of unit axial length (force) to the deflection as

shown in Fig. 16. The qualitative argument for initiation of shear crippling in a thick cross-ply ring (in-

finitely long cylindrical shell) is similar to that for a number of localization phenomena––necking of a metal

bar in tension (Hutchinson and Neale, 1983), shear banding followed by necking in a polycarbonate bar

under tension (Lu and Ravi-Chandar, 1999), initiation of bulging in a party balloon (Chater and Hutch-
inson, 1984), and various kinds of phase transition phenomena mentioned earlier. The shear crippling is a
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phenomenon associated with localization of the post-buckling deformation pattern in a manner described

by Tvergaard and Needleman (1980, 2000).

In analogy to what is well-known in the phase transition literature, the slope of p� vs.

w� ¼ �w=ðRi � w0Þ curves (Fig. 16), can never be negative. These curves represent iso-thickness-
shear states, which are analogous to isotherms of the phase transition literature. While in the absence

of any localized or dimple type imperfection, the slope may be expected to be positive until failure, the

presence of such defects, representing initial thickness shear strains, can cause a region with near-zero

slope to exist, whereby the structure may nearly lose its stiffness. The existence of such a region in the

p� vs. w� diagram corresponds to the coexistence of two phases, namely a highly localized band (of

half-width, c) of shear crippled phase and its un-shear-crippled counterpart in the rest of the ring. In

analogy to the phase transition phenomena, the dimple type imperfection may be treated as an impurity

or dopant. An understanding analogous to how impurities localize electron states in condensed mat-
ter (see Zee, 1995) is helpful for interpretation of the experimentally observed (see Chaudhuri,

1991; Garala, 1989; Garala and Chaudhuri, 1993) localization of shear crippled bands. The afore-

mentioned near-zero slope constitutes a direct evidence of the onset of phase transition in the system.

It is worthwhile to note in this connection that as long as one uses the exact geometry for modeling the

initial localized defects represented here by the dimple type imperfection, and exact constitutive relations,

such as nonlinear elastic (hypoelastic) behavior of GTT of a unidirectional lamina employed here, the un-

physical region of negative slope in the p� vs. w� diagram would never appear. The appearance of such an

unphysical region in the present case is then a direct consequence of simplifying assumptions, that eliminate
the very possibility of the structural system passing through a state or region of flatness in the p� vs. w�

diagram, in which there coexist two phases of different transverse shear strains. This kind of discrepancy is

usually corrected by the Maxwell construction (e.g., equal areas in Fig. 13 of Chaudhuri and Kim, 1997).

Introduction of dimple type imperfection and nonlinear GTT in the present analysis has then eliminated the

need for employment of such an artifice as the Maxwell construction. This opens the door for the possibility

that under favorable conditions, such as the material nonlinearity and presence of severe localized (dimple)

type imperfection, which is the archetype of the class of localized defects, such as fiber misalignment defects,

resin rich areas etc. (Figs. 3 and 4), the equilibrium configuration of the externally pressurized composite
ring will involve a multi-phase––i.e., localized shear crippled (kinked) band and its un-shear-crippled

(unkinked) counterpart––state. It is further noteworthy that the observed microstructural ordering of the

shear-kinked fibers in a localized shear crippled or kinked band (see Chaudhuri, 1991) is analogous to long

range order that arises in the case of collective states of condensed media formed under phase transition of

the second kind, such as superfluidity of liquid helium, and the superconductivity and ferromagnetism of

metals, which exist only at temperatures below the critical temperature (see Mattuck, 1976; Popov and

Yarunin, 1988).

The above localized shear-crippling phenomenon may be called an interaction or meso-structural in-
stability type failure mode that results from a coupling between macro-structural (periodic or modal) and

micro-structural (kink band) instabilities, unless the material itself succumbs to the strength failure mode

before the occurrence of such interaction type failure mode. It is obviously seen that a three-dimensional or

quasi-three-dimensional theory, such as the LLDT is essential in order to capture the meso-structure-

related instability failure such as interlaminar shear crippling, triggered by the combined presence of local

imperfection and material nonlinearity.
7. Summary and conclusions

A fully nonlinear analysis for prediction of localization representing shear-crippling (kinkband) insta-
bility in a thick laminated composite (plane strain) ring (infinitely long cylindrical shell) is presented. The
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analysis accounts for both material (hypoelastic behavior) and geometric nonlinearities, the latter incor-

porating the completely nonlinear strain-displacement relations, in contrast to the commonly used von

Karman type nonlinear approximation. The fully nonlinear kinematic relations are employed in the present

study so that stable and unstable equilibrium paths in the advanced nonlinear regime can be accurately
predicted. The primary accomplishment of the present investigation is prediction of meso(lamina)-struc-

ture-related equilibrium paths, which are often unstable in the presence of local imperfections and/or

material nonlinearity, and which are considered to ‘‘bifurcate’’ from the primary equilibrium paths, rep-

resenting periodic buckling patterns pertaining to global or structural level stability of the thick cross-ply

ring with modal or harmonic imperfection.

A special purpose nonlinear finite element computer code, referred to as NLSAMP, is developed to

predict the afore-mentioned deformation/instability behavior of laminated shell type structures and

evaluate failure modes when hydrostatic compressive loads are applied. The present nonlinear finite
element solution methodology, based on the total Lagrangian formulation, employs a quasi-three-

dimensional hypothesis, known as the LLDT to capture the three-dimensional interlaminar (especially,

shear) deformation behavior, associated with the localized interlaminar shear-crippling failure. A cur-

vilinear side layer element with 8 nodes each on the top and bottom surfaces of a layer has been im-

plemented to model the quasi-three-dimensional interlaminar deformation behavior, represented by the

LLDT. The most important computational feature of the NLSAMP is successful implementation of an

incremental displacement control technique combined with an incremental force control scheme, during

the solution process.
A thick laminated composite [90/0/90] imperfect (plane strain) ring is investigated with the objective

of analytically studying its premature compressive failure behavior. In order to investigate local-

ization of the buckling pattern, a local or dimple shaped imperfection superimposed on a fixed modal

or harmonic one is selected. What follows is a list of useful conclusions drawn from the numerical

results:

(i) Numerical results suggest that interlaminar shear/normal deformation (especially, the former) is

primarily responsible for appearance of a limit (maximum pressure) point on the post-buckling equilibrium

path associated with a periodic (modal or harmonic) buckling pattern, for which a modal imperfection
serves as a perturbation. Localization of the buckling pattern results from bifurcation at or near this limit

point.

(ii) With the increase of local imperfection amplitude, the limit load (hydrostatic pressure) decreases, and

also the limit point appears at an increased normalized deflection.

(iii) Material nonlinearity has a pronounced effect in lowering the maximum load carrying capacity of

the thick composite ring under investigation along with the amplitude of local imperfection. The dis-

placement corresponding to maximum pressure is also delayed with the imperfection amplitude as in the

linear elastic material case.
(iv) When the pressure reaches its theoretical maximum point, the transverse deflection nodal line shifts

to h ¼ 50� (approx.), while the layerwise variation of shear angle through thickness that results in shear-

crippling pattern of circumferential displacement as well as dimple patterns of transverse deflection tends to

delocalize or spread out along the circumferential direction.

(v) The pressure–deflection curves tend to flatten (nearly zero slope) in the presence of material non-

linearity and with the increase of the amplitude of localized (dimple) imperfection, to an undetermined

lowest pressure level, signaling the onset of phase transition in the localized region, and coexistence of two

phases, i.e., a highly localized band of shear crippled (kinked) phase and its un-shear-crippled (unkinked)
counterpart along the circumference of the ring.

(vi) The computed theoretical limit point pressure is unattainable, because of the existence of an

unstable equilibrium path that follows the limit point, and which results from the combined effect of

local imperfection and/or material nonlinearity. It will switch to a localization mode, which is com-
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patible with meso-structural level deformation mode or pattern, followed by an approach to the onset

of phase transition with a significant drop of the load carrying capacity of the composite [90/0/90]

ring under investigation. In analogy to phase transition phenomena in condensed matter physics, this

represents a long range order (of nonlocal or gage theories) that is intimately connected with
spontaneous symmetry breaking. In the example problem studied, localization of the deformation

pattern is associated with spontaneous breaking of the periodicity of classical or modal buckling

patterns.

(vii) Introduction of dimple type imperfection and nonlinear GTT in the present analysis eliminates the

need for employment of such an artifice as the Maxwell construction. This opens the door for the possibility

that under favorable conditions, such as the material nonlinearity and presence of severe localized (dimple)

type imperfection, which is the archetype of the class of localized defects, such as fiber misalignment defects,

resin rich areas, etc., the equilibrium configuration of the externally pressurized composite ring will involve
a multi-phase––i.e., localized shear crippled (kink) band and its un-shear-crippled (unkinked) counter-

part––state.

(viii) The observed micro-structural ordering of the shear-kinked fibers in a localized shear crippled or

kinked band is analogous to long range order that arises in the case of collective states of condensed media

formed under phase transition of the second kind.

(ix) Onset of the interlaminar shear-crippling (kinkband) type instability, which represents an inter-

action or meso-structural instability type failure mode that results from a coupling between macro-

structural (periodic or modal) and micro-structural (kink band) instabilities, and is triggered by the
combined effect of material nonlinearity and local (e.g., dimple) imperfection at the meso-structural (i.e.,

lamina) level appears to be the dominant compressive failure mode. Structural (periodic) buckling or

limit load can be attained, only if the lamina material can survive this meso-structure-related instability

failure.

(x) Although the FSDT appears to be adequate for prediction of an accurate load–displacement solution

and macrostructural level buckling of a cross-ply cylindrical shell made of a linear elastic material and with

modal imperfection, a quasi-three-dimensional theory such as the LLDT is essential to capture the meso-

structure-related instability failure such as localized interlaminar shear crippling, triggered by the combined
presence of local imperfection and material nonlinearity.
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Appendix A. Constitutive relations for an orthotropic lamina

Taking into account nonlinear elastic (hypoelastic) behavior (as opposed to plasticity) and neglecting the

thermal and hygrothermal effects, the incremental strain-stress relations of the kth orthotropic lamina in

terms of the principal material directions ðx; b; zÞ are given as follows:
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In the above equation, the compliance matrix components Rij�s can be approximated analytically by the

method of Ramberg and Osgood (1934) who have suggested that rising stress–strain curves with a smooth

knee be represented by the relation
RðkÞ
jj ¼ 1

EðkÞ
jj

1

24 þ 3

7
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 !n�1
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where EðkÞ
jj and t

0S
ðkÞ
jj denote elastic (Young�s or shear) moduli and stress components at time t, respectively,

of the kth lamina material, while mðkÞ12 , m
ðkÞ
13 and mðkÞ23 represent major Poisson�s ratios in the x–b, x–z and b–z

planes (surfaces), respectively, of the same. Details of nomenclature and property definitions of the non-

linear (hypoelastic) composite material are shown in Fig. 6.

The stress SðkÞ
Rjj is defined as the stress at which EðkÞ

Sjj ¼ RðkÞ
jj

� ��1

¼ 0:7EðkÞ
jj , where E

ðkÞ
Sjj is the secant modulus.

The exponent n, known as the hardening parameter, is found from the expression for the secant modulus

thus defined:
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with
SðkÞ
Rjj ¼ mEðkÞ

jj : ðA:3bÞ
Evaluation of Eq. (A.3a) at EðkÞ
Sjj ¼ 0:85EðkÞ

jj gives
n ¼ log10ð0:441Þ
log10ðS

ðkÞ
2 =SðkÞ

RjjÞ
þ 1; ðA:4Þ
where SðkÞ
2 is the stress at EðkÞ

Sjj ¼ 0:85EðkÞ
jj . It may be noted that the linear elastic and the perfectly elastic–

plastic cases can be obtained by substituting SRjj ¼ 1 and n ¼ 1, respectively, into Eq. (A.2). The con-

stitutive relation for each lamina can be obtained by inversion of Eq. (A.1) as follows:
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Q
ðkÞ
ij , i; j ¼ 1; . . . ; 6, the components of the corresponding incremental stiffness matrix of an off-axis lamina,

made of a hypoelastic composite material, can be obtained from QðkÞ
ij via standard transformation rule.

Appendix B. Definition of certain matrix operators

The differential operators, ½BðkÞ
LL�, ½B

ðkÞ
NL� and ½BðkÞ

NN�, are as presented below. The matrix ½BðkÞ
LL� referred to in

Eqs. (10a), (10b) and (11b) is given as
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while the matrix ½BðkÞ
NL� referred to in Eqs. (10b) and (11b) is given as follows:
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where the components of the vector �vvðkÞ
	 


are known displacements at time t. The matrix BðkÞ
NN

h i
referred to

in Eqs. (10b) and (B.3) is given as follows:
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The layerwise linear distribution of displacement matrix, ½TBT�, referred to in Eqs. (10) and (11) can be

written as follows (see Kim and Chaudhuri, 1995):
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0 0 1� z

hk
0 0 z

hk

24 35: ðB:7Þ
The quadratic global interpolation function matrix, ½U�, referred to in Eqs. (10) and (11) is given by
½Uðr; sÞ� ¼

fwg f0g f0g f0g f0g f0g
f0g fwg f0g f0g f0g f0g
f0g f0g fwg f0g f0g f0g
f0g f0g f0g fwg f0g f0g
f0g f0g f0g f0g fwg f0g
f0g f0g f0g f0g f0g fwg

26666664

37777775; ðB:8Þ
wherein
fwg ¼ w1 w2 w3 w4 w5 w6 w7 w8f g ðB:9Þ

and f0g is 1 · 8 null matrix. wkðr; sÞ, k ¼ 1; . . . ; 8, are the shape functions as used for displacements and

coordinates.

Finally, the stress matrix, ½t0bSSij�, and stress vector, ft0Sijg, referred to in Eqs. (10b) and (11b), respectively,

are given as follows:
½t0bSSij� ¼
½t0S�� ½0� ½0�
½0� ½t0S�� ½0�
½0� ½0� ½t0S��

24 35; ðB:10Þ
with
½t0S�� ¼
½t0S11� ½t0S12� ½t0S13�
½t0S12� ½t0S22� ½t0S23�
½t0S13� ½t0S23� ½t0S33�

24 35 ðB:11Þ
and
ft0SijgT ¼ t
0S11 t

0S22 t
0S33 t

0S23 t
0S13 t

0S12f g: ðB:12Þ
Appendix C. Incremental displacement control technique

In the event of a displacement increment, 0Vq, being specified at a load step, t to t þ Dt, instead of varying

the load parameter, the qth component of the total displacement vector at the first iteration of the time step

t to t þ Dt, is incremented by 0Vq, while the initial solution vector tþDtfV gð0Þ is redefined as
tþDtfVgð0Þ ¼ tfVg; ðC:1aÞ

tþDtkð0Þ ¼ tk; ðC:1bÞ
where the qth component of the total displacement at time t þ Dt, tþDtV ð0Þ
q ¼ tVq þ 0Vq, while the scalar

quantity tþDtkð0Þ represents the initial load level that is calculated at the previous time step. The Newton–

Raphson method introduced in calculating prebuckling solution is employed to obtain the unknown in-

cremental displacement vector and the corresponding force vector with 0Vq considered as fixed during an

iteration. The modified algorithm (see e.g., Batoz and Dhatt, 1979) for solving Eq. (9) then becomes
ð½KL� þ t½KN�ÞðiÞf0RgðiÞ ¼ tþDtffNgði�1Þ
; ðC:2aÞ
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ð½KL� þ t½KN�ÞðiÞf0QgðiÞ ¼ tþDtffLg; ðC:2bÞ
where tþDtffNgði�1Þ
is the residual vector (i.e., nonlinear force vector) evaluated at the ði� 1Þth iteration of

the time step, t to t þ Dt, while tþDtffLg is the applied load vector that is assumed to be proportional for each
time step, which is multiplied by 0k

ðiÞ to obtain the actual load corresponding to the prescribed displace-

ment. The quantities f0RgðiÞ and f0QgðiÞ are incremental displacements due to the residual force vector and

the applied load vector respectively. The complete solution of Eq. (14) is now defined by
tþDtfVgðiÞ ¼ tþDtfVgði�1Þ þ f0VgðiÞ; ðC:3aÞ
f0VgðiÞ ¼ f0RgðiÞ þ 0k
ðiÞf0QgðiÞ: ðC:3bÞ
The value of incremental load scale factor, 0k
ðiÞ can be obtained as follows, reflecting that the qth com-

ponent of the incremental displacement (i.e., 0V ðiÞ
q ) is set to zero during iteration:
0k
ðiÞ ¼ � 0RðiÞ

q

0Q
ðiÞ
q

; ðC:4Þ
where RðiÞ
q and QðiÞ

q are the qth components of vector f0RgðiÞ and f0QgðiÞ, respectively. In the present in-

vestigation, the total stiffness matrix in Eq. (C.2) is not calculated at each iteration but calculated and

factorized at each time step. It is implicitly assumed that the total stiffness matrix remains non-singular at

any solution level. Theoretically, if a certain displacement solution corresponds to a critical or singular

point, the total stiffness matrix will be singular. However, in practice, it is nearly impossible to obtain a

solution vector exactly corresponding to a singular point, due to a large number of components of tþDtfVgðiÞ
and possible round-off errors. The above-mentioned algorithm for solving Eq. (C.2) is, therefore, utilized in

this investigation without the problem of singularity of the total stiffness matrix encountered. In a situation
where the matrix is singular, the previous algorithm should be modified to avoid the singularity in a manner

suggested by Zienkiewicz (1971) and Thomas and Gallagher (1975). Furthermore, neither the stiffness

matrix need to be reorganized into partitioned form nor the sky-line and bandwidth of the stiffness matrix

should be destroyed in the present investigation. Only two different load vectors (i.e., tþDtffNgði�1Þ
and

tþDtffLg in Eq. (C.2) are involved, which are back-substituted in the subroutine COLSOL to calculate the

incremental displacements simultaneously.
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