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Abstract

A fully nonlinear finite elements analysis for prediction of localization representing shear-crippling (kinkband) in-
stability in a thick laminated composite (plane strain) ring (infinitely long cylindrical shell) under applied hydrostatic
pressure is presented. The primary accomplishment of the present investigation is prediction of meso(lamina)-structure-
related equilibrium paths, which are often unstable in the presence of local imperfections and/or material nonlinearity,
and which are considered to ‘“bifurcate’ from the primary equilibrium paths, representing periodic buckling patterns
pertaining to global or structural level stability of the thick cross-ply ring with modal or harmonic imperfection. The
present nonlinear finite elements solution methodology, based on the total Lagrangian formulation, employs a quasi-
three-dimensional hypothesis, known as layerwise linear displacement distribution theory (LLDT) to capture the three-
dimensional interlaminar (especially, shear) deformation behavior, associated with the localized interlaminar
shear-crippling failure.

A thick laminated composite [90/0/90] imperfect (plane strain) ring is investigated with the objective of analytically
studying its premature compressive failure behavior. Numerical results suggest that interlaminar shear/normal defor-
mation (especially, the former) is primarily responsible for the appearance of a limit (maximum pressure) point on the
post-buckling equilibrium path associated with a periodic (modal or harmonic) buckling pattern, for which a modal
imperfection serves as a perturbation. Localization of the buckling pattern results from “bifurcation” at or near this
limit point, and can be viewed as a symmetry breaking phenomenon.

In order to investigate a localization of the buckling pattern, a local or dimple shaped imperfection superimposed on
a fixed modal one is selected. With the increase of local imperfection amplitude, the limit load (hydrostatic pressure)
decreases, and also the limit point appears at an increased normalized deflection. Additionally, the load—deflection
curves tend to flatten (near-zero slope) to an undetermined lowest pressure level, signaling the onset of “phase tran-
sition” in the localized region, and coexistence of two “phases”, i.e., a highly localized band of shear crippled (kinked)
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Nomenclature

] diagonal matrix composed of Aitken acceleration factors

[4

[Bikﬁ] linear differential operator matrix relating the linear incremental strain components to in-
cremental displacement components in the kth layer

[BY)]  linear differential operator matrix relating the linearized incremental strain components to
incremental displacement components in the kth layer

[B;%] linear differential operator matrix relating the nonlinear incremental strain components to
incremental displacement components in the kth layer

b,t subscript or superscript indicating the bottom and the top surface, respectively
oCiirs  incremental elastic stiffness (material property) tensor
c characteristic constant related to local imperfections

#ards  differential loading surface area evaluated at the first iteration of each load step when hy-
drostatic pressure is applied

0dr infinitesimal control volume with respect to the initial configuration

ErL, Ert,vir longitudinal and transverse Young’s moduli, and major Poisson’s ratio, respectively, of a

unidirectional lamina

linear incremental component of the 6x 1 strain vector

Oé}j linearized incremental component of the 6x 1 strain vector

{fL}  applied load vector

AL} applied load vector at the time ¢ + At

{fn}  nonlinear internal force vector

A fN}@ nonlinear internal force vector at the ith iteration of the time step between ¢ and ¢ + At
Gr1,Grr longitudinal and transverse shear moduli, respectively

g,@ (z) coeflicient of the first fundamental differential quadratic form of a parallel surface of the ith
layer in the kth direction, k = 1(x), 2(f), 3(z)

g}]’” coefficient of the first fundamental differential quadratic form of the bottom surface of the ith
layer in the fth direction

hih thickness of the ith lamina and the laminated shell, respectively

K] linear global stiffness matrix

[Kn]  nonlinear contribution to the global geometric stiffness matrix

m ratio of reference yielding stress to transverse shear modulus in Ramberg-Osgood represen-
tation

N total number of elements

Np, Ns number of elements for each layer and number of layers, respectively

n*+*D  unit normal vector for the top surface of the kth layer with respect to the fixed coordinate
system

{+Am®s+D normal direction vector of the loaded surface (Ns + 1) evaluated at the first iteration of
each load step when hydrostatic pressure is applied

P, applied hydrostatic pressure
p uniform hydrostatic pressure
Per classical buckling pressure of a long cylinder

[0W], @<k)] incremental elastic stiffness (material property) matrix for the kth orthotropic and aniso-
tropic layer, respectively
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r(0), R(0) radial coordinates of the innermost (bottom) surface of an undeformed and deformed ring,
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oy

A {V}(i) total displacement vector at the ith iteration of the time step between ¢ and ¢ + At
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" incremental elastic stiffness matrix components of the kth orthotropic and anisotropic layer,

respectively

incremental displacement vector due to the applied load vector
inner radius of a long perfect cylinder (plane strain ring)
external virtual work done on a body

incremental displacement vector due to the residual force vector

ring, respectively, with modal imperfection

respectively, with combined modal/local imperfection

loading surface area evaluated at the first iteration of each load step when hydrostatic pressure
is applied

incremental stress component of the kth layer

second Piola—Kirchhoff stress tensor at time ¢ + At evaluated with respect to the initial con-
figuration

9x9 stress matrix evaluated at time ¢

6x 1 stress vector evaluated at time ¢

}(H) element stress vector of the kth layer evaluated at the (i — 1)th iteration of each load step
time as an index

bottom surface of the ith layer in x'(or x), x2(or f8), and z directions, respectively

surface of the ith layer in x' (or x), x*> (or ), and z directions, respectively

the gth displacement prescribed at each time step for the displacement increment method
amplitudes of modal and local imperfections, respectively, of a ring

coordinates of a point inside a layer

global Cartesian coordinate coordinates, k = 1,2,3

physical component of the Green—Lagrange strain tensor

incremental strain component of the kth layer

total Green—Lagrangian strain tensor evaluated with respect to the initial configuration at
time ¢ + At

force and energy convergence criteria, respectively

9x 1 nonlinear strain component vector and its variation, respectively

incremental load scale factor due to the prescribed displacement component

quadratic global interpolation function matrix

angle measured from the global x3 axis

radius of curvature of the inner surface of the ith layer of an imperfect cylindrical shell/ring
component of the incremental compliance matrix of a lamina

quadratic element interpolation function in terms of » and s

radial distance of a point inside a laminated ring measured from its bottom surface
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phase and its unshear-crippled (unkinked) counterpart along the circumference of the ring. Interlaminar shear-crippling
triggered by the combined effect of imperfection, material nonlinearity and interlaminar shear/normal deformation
appears to be the dominant compressive failure mode. A three-dimensional or quasi-three-dimensional theory, such as
the afore-mentioned LLDT is essential in order to capture the meso-structure-related instability failure such as
localization of the interlaminar shear crippling, triggered by the combined presence of local imperfection and material
nonlinearity.

© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Advanced laminated composite materials, e.g., carbon/epoxy, carbon/PEEK, etc., are increasingly being
used in hydrospace applications. Pressure hulls of submersibles, such as those used in search and rescue
operations, e.g., in the Russian submarine, Kursk, disaster, constitute one such example. Feasibility studies
pertaining to the use of fiber-reinforced composite materials for deep submergence pressure applications
have been carried out by the US Navy since 1960s (Couch et al., 1969). The composites used in such
hydrospace applications must, by necessity, be thick-sections in order to avoid catastrophic collapse caused
by global (structural) buckling, and must sustain large hydrostatic compressive loads. Their deformation
and failure behavior (e.g., buckling/post-buckling, shear crippling, kinking, etc.) are of great concern to
marine/submersible structural designers.

Garala (1989) has carried out extensive experimental and numerical evaluations of advanced (e.g.,
carbon/epoxy) composite thick unstiffened cylindrical shell specimens, e.g., inner radius to thickness ratio,
Ri/h ~ 6.0, R; ~ 8.89 cm (3.5 in.) and length, L =~ 20.32 cm (8.0 in.), subjected to external pressure loading
(Fig. 1). He has reported details of (a) fabrication methods of cylinders, (b) experimental data on collapse
pressures, strains and damage assessment, obtained using strain gages and acoustic emission (AE), and (c)
structural analyses for prediction of stresses and collapse pressures, performed using standard finite element
codes, e.g., ABACUS. The key observations can be summarized as follows: (a) the observed hoop stress
level of approximately 579 MPa (84 ksi) is considerably lower than the estimated value of 1.1 GPa (160 ksi)
based on thin-section composites experience (using the rule of mixtures with 1.655 GPa (240 ksi) insitu fiber
strength); (b) unacceptably low failure external pressure in the 83 MPa (12 ksi) range has generally been
observed with certain exceptions, as compared to the computed value of 152 MPa (22 ksi) based on the
above estimated hoop stress value; (c) a considerable amount of scatter has been observed in the test data;
and (d) fabrication defects are believed to have a detrimental effect on the compressive strength. Abdallah
et al. (1990) have conducted a series of innovative tests on thick composite rings (Fig. 2) under external
pressure, using an especially designed bladder and obtained extensive data by means of strain gages, AE,
photoelasticity and Moiré interferometry. In general, although the ring specimens failed at pressures 10—
25% higher than their cylindrical counterparts, made of the same material systems, almost identical failure
mechanisms are observed in both sets of specimens.

Starnes and Williams (1982) have reported a shear crippling (kinkband) type of failure to be prevalent in
0°-plies of a 48-ply laminate in the immediate vicinity of a hole as well as in a localized region of low
velocity impact damage prior to catastrophic failure under compression. It may be remarked that shear
crippling and kinkband represent the same instability phenomenon viewed at two geometrical scales: the
former at the meso-structural (lamina) level, while the latter at the micro-structural (fiber-matrix) scale.
Waas et al. (1990) have carefully monitored in real time the compressive damage initiation and propagation
in a laminated plate through holographic interferometry and photomicrography of the hole surface, and
have concluded that failure is initiated as a localized micro-buckling/kinking instability in the 0°-plies at the
hole surface followed by delamination.
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Fig. 1. Localized shear-crippling failure in a thick [90,/0], cylindrical shell tested under hydrostatic compression at NSWC, Carderock,
MD.

Fig. 2. Localized shear-crippling failure in a thick [90,/0], ring tested under hydrostatic compression at Alliants (formerly, Hercules),
Inc., Magna, UT.
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Fig. 3. Localized fiber waviness in a thick composite cylinder shell.

Chaudhuri (1991) has identified the formation and propagation of fiber kink bands at the microscopic
level triggered by localized defects, such as fiber misalignment (see Fig. 3 for an extreme example), formed
during the manufacturing process, leading to localized shear-crippling failures observed by Garala (1989)
and Abdallah et al. (1990) and shown in Figs. 1 and 2, to be the dominant (lowest energy) compressive
failure mode for the thick-section [90,/0]  type composite cylinders. Initial fiber misalignment, ultimate
fiber strain and the two transverse shear moduli, G .t and Grr, of the laminate, have been found to be the
key parameters, limiting the compressive strength of the afore-mentioned thick-section composite lami-
nates. Regardless of the event or sequence of events that may act as precursor(s), kink band formation,
once triggered, will, in general, be the dominant (lowest energy) failure mode, especially in the presence of
such defects as fiber waviness or misalignment, resin rich areas, etc. Numerical results for carbon/epoxy
laminates demonstrate their extreme sensitivity to initial fiber misalignment defects, which are, at least
partially, responsible for the lowering of the compressive strength of the thick cylinders tested by Garala
(1989) and the observed scatter in his test data. These theoretical results have also been experimentally
verified by Garala (1989). Various candidate sites for initiation of localized shear-crippling failures in
laminated composite structural components, experimentally observed by Garala (1989), Abdallah et al.
(1990), Starnes and Williams (1982) and others are shown in Fig. 4.

The afore-mentioned understanding of the microscopic behavior of carbon/epoxy composites not-
withstanding, some serious questions remain to be addressed. Of utmost importance is the transition or
missing link between micro-structural instability, such as kink band type failure at the fiber-matrix level (at
the geometric scale of about 10 um) investigated by Chaudhuri et al. (1996) and others on one hand, and
macro-structural instability, such as buckling/post-buckling failure of a structural component, e.g., a ring
or cylindrical shell (at the geometric scale of at least several cm’s and larger). This transition, termed here
meso-structural instability, is identified to occur at the ply level at the geometric scale of about at a
minimum of some multiples of 130 um (a ply thickness), and is the primary focus of the present investi-
gation. In the interest of computational efficiency, about 38 such plies are lumped together to form a model
layer in the present study, without any loss of generality of the issue at hand or of accuracy of the con-
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Fig. 4. Various initiation sites for localized shear-crippling failure in laminated composite structural components.

clusions to be drawn based on these numerical results. Of additional interest is the sensitivity of the re-
sponse of a thick composite ring (infinitely long cylindrical shell) to nonlinear material property, as well as
to geometrical defects such as dimple shaped local imperfections in addition to modal imperfections, e.g.,
out-of-roundness, which are apt to be generated during a large scale fabrication process of thick-section
laminated shells.

In this connection, it is worthwhile to mention that the compressive response of a thin ring or shell
structure is known to be primarily characterized by the stability of equilibrium at the macro-structural level.
The loss of stability of an isotropic thin shell-type structure under external pressure has been studied ex-
tensively since the pioneering work of Koiter (1945), and is relatively well understood. An important in-
gredient of Koiter’s theory is the investigation of the effect of a small imperfection whose shape is the same
as that of a classical buckling mode. More recently, Abdelmoula et al. (1992) have investigated the effect of
modal as well as local (dimple shaped) imperfections on the load carrying capacity of thin elastic isotropic
cylindrical shells subjected to external pressure. Jamal et al. (1999) have investigated the influence of lo-
calized imperfections on the elastic buckling of a long cylindrical shell (with large Batdorf parameter) under
axial compression by using a double scale analysis including interaction modes. Kim and Chaudhuri (in
review) have investigated the influence of a localized imperfection on the elastic buckling of a thin cylin-
drical shell (with large Batdorf parameter) under hydrostatic pressure using a finite element analysis with
fully nonlinear kinematic relations. Tvergaard and Needleman (1980) in relation to the compression failure
of thin metallic structures, such as an elastic column on a softening (inelastic) foundation and an elastic—
plastic plate have observed that “the final buckled configuration involves a localized buckling pattern, in
contrast with the periodic deformation pattern associated with the critical buckling mode”, and addi-
tionally, that the applied load—deflection curve attains a maximum or limit load point. Their finite element
analysis of the elastic—plastic imperfect thin strip under axial compression shows the development of lo-
calization for the case of a low hardening material, whereas localization does not occur in the otherwise
same plate of a high hardening material for which no limit load is reached. More recently, Tvergaard and
Needleman (2000) have reexamined the post-bifurcation behavior of an axially compressed elastic—plastic
cylindrical panel, and confirmed their previous conclusion with regards to the localization of buckling
patterns reached for the afore-mentioned problems analyzed in their earlier work (Tvergaard and Nee-
dleman, 1980). A detailed review of the literature on localization of buckling pattern in elastic—plastic thin
structural elements, localization of plastic flow, including shear band formation in solids and localized
necking in biaxially stretched metal sheets, and cavitational (void growth) instabilities in elastic—plastic
solids is available in Tvergaard (1999), and will not be repeated here in the interest of brevity. For other
recent localization studies in buckling, the special issue of the journal “Chaos, Solitons and Fractals™ (Xie,
2000) and references quoted therein may be consulted by interested readers.



7070 R A. Chaudhuri, D. Kim | International Journal of Solids and Structures 40 (2003) 7063-7092

A review of the literature suggests that the emergence of meso-structure (i.e., lamina level) related in-
stability modes, such as interlaminar shear-crippling failures, experimentally observed by Starnes and
Williams (1982) and Garala (1989) has not been investigated to the extent it deserves. Therefore, the pri-
mary objective of the present investigation is to fill this analytical gap, and to identify basic meso-structure-
related mechanisms causing the afore-mentioned “premature” failure of the advanced composite rings
under investigation.

Chaudhuri and Kim (1997) have investigated the roles of thickness (i.e., interlaminar shear/normal
deformation) and modal imperfection in lowering the load carrying capability of an infinitely long (plane
strain) thick symmetrically laminated cross-ply [90/0/90] cylindrical shell (ring) with linear material pro-
perty. Numerical results on symmetrically laminated [90/0/90] moderately thick and thick (plane strain) rings
with modal imperfections and made of linear elastic materials show that a limit point appears on the post-
buckling equilibrium path, due to the effect of interlaminar shear deformation, significantly reducing the
load carrying capacity (e.g., 72.6% in the case of R;/h = 6.0) compared to their classical lamination theory
(CLT) based linearized buckling loads. The appearance of a limit point on the elastic post-buckling
equilibrium path is delayed as the inner radius to thickness ratio increases (i.c., as the effect of interlaminar
shear/normal deformation decreases) from 6 to 60, and finally disappears in the very thin ring case
(R;/h = 60 and beyond), which is to be expected in accordance with the CLT. As has been discussed there,
the appearance of a limit point on the elastic post-buckling equilibrium path is a measure of the effect of
interlaminar shear/normal deformation on localization. This notwithstanding, the effect of material non-
linearity combined with that of localized imperfection on the details of the localization behavior in the
context of interlaminar shear deformation at the lamina level has not been investigated, however.

In what follows, a nonlinear thick cylindrical shell finite element analysis is developed in order to obtain
the discretized system equations. The present investigation includes all the nonlinear terms in the kinematic
equations and utilizes the total Lagrangian formulation in the constitutive equations and incremental
equilibrium equations. A cylindrically curved 16-node layer-element is used, which is based on an assumed
quadratic displacement field (in surface-parallel coordinates) and the assumption of layerwise linear dis-
placements distribution through thickness (LLDT). The Newton—-Raphson iteration scheme in conjunction
with Aitken acceleration is used to obtain the limit load. Beyond this load, the post-buckling behavior is
obtained by an incremental displacement control scheme rather than the usual incremental force control
scheme, when a limit point appears on the equilibrium path. In order to investigate localization of the
buckling pattern, a modal in combination with a local or dimple shaped imperfection is selected. The
combined effects of local/modal imperfections, interlaminar shear/normal deformation and nonlinear
(hypoelastic) material property for the transverse shear modulus, Grr, on the emergence of interlaminar
shear-crippling type meso-structural instability modes, related to the localization phenomenon, are inves-
tigated. The classical approach which is concerned with the periodic buckling/post-buckling pattern,
although deemed sufficient for the design of most thin elastic structures, is inadequate when it comes to
localized failures (instabilities), such as those experimentally observed by Garala (1989) and Abdallah et al.
(1990).

2. Three-dimensional kinematic relations for a thick imperfect cylindrical shell

Fig. 5 shows the schematic of a laminated cylindrical shell. Invoking the theory of parallel surfaces, the
coefficients of the first fundamental differential quadratic form of a surface inside the ith layer of a lami-
nated imperfect cylindrical shell can be written in terms of their bottom surface counterparts as follows:

i i —(i z i
=1 ge-g(1+5) L=t 0
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i-th Reference Surface

Fig. 5. Geometry of a laminated cylindrical shell (infinitesimal) element.

The components of the engineering nonlinear strain in terms of the physical components of the displace-
ment vector at an arbitrary point inside the ith layer are obtained as follows:
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3. Linearized equations of motion and the method of virtual work

The second Piola—Kirchhoff stress tensor is conjugate to the Green—Lagrange strain tensor in that their
properties are also invariant under rigid body motions. When the equilibrium of the body at time ¢ + At is
first expressed using the principle of virtual displacements with tensor notation, the total Lagrangian
formulation requires that

%V r+%rSl_j 8t+%t§ij0 dv = t+AtiR7 (4)

where the "§'S;; and "{¢;; are the Cartesian components of the second Piola—Kirchhoff stress tensor and
the total Green—Lagrange strain tensor defined at time ¢ + A¢, respectively, referred to the initial configu-
ration, while 7R represents the external virtual work. Furthermore,

t+At _ ot
AL, = 6y + 0Si; (5)
and
HAt; g = 5. — > 7
0 & = 08 + 0&ij, 0&;j = 0€ij + ofly; (6a,Db)

where (S;; and (S;; represent components of the second Piola—Kirchhoff stress tensor defined at time ¢, and
the incremental components of the same during the subsequent time step At, respectively, both referred to
the initial configuration. The quantities oe; and o7,; in Eq. (6b) denote the linear and the nonlinear in-
cremental strains, respectively, that are referred to the initial configuration. The linear strain vector {oe;} is
here resolved into two parts that are the pure linear part {ye;;}, and the linearized part {¢e]} }. The incre-
mental constitutive relation, which relates the components of incremental stress and incremental strain both
referred to the initial configuration, is given by

08i7 = 0Cijrs 08rs (7)

in which (Cjs is the incremental elastic stiffness (material property) tensor, referred to the initial configu-

ration and represented as [Q] in matrix notation (see Appendix A and also refer to Fig. 6). Substitution of

A
SRii —
s2
8o 85Eii
wa 0.70Eii
Eii
Strain, €

Fig. 6. Definition of parameters in Ramberg-Osgood representation of stress—strain curves.
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Egs. (5)—(7) into the left hand side of Eq. (4) finally yields the equations needed for the finite element
formulation. The details are available in Chaudhuri and Kim (1997).

Because the variation in the strain components is equivalent to the virtual strains, the right hand side of
Eq. (4) is the virtual work done when the body is subjected to a virtual displacement at time ¢ + A¢. The
corresponding virtual work is given by

t+Ath — t+AtfiS SVIS t+AtdS’ (Sa)

HALg

where the /5 is the surface force vectors applied on the surface S at time 7 + A¢, and §ov’ is the ith
component of the incremental virtual displacement vector evaluated on the loaded surface. When the
hydrostatic pressure is applied, the loading-path is always deformation-dependent, which requires that the
load vector should be evaluated at the current configuration. The external virtual work can, however, be
approximated to sufficient accuracy using the intensity of loading corresponding to time ¢ + Az, integrated
over the surface area, “'S*=V calculated at the (k — 1)th iteration (see Section 5) as follows:

t+Ath — / t+AtfiS 601)? H'AtdS. (Sb)
t+At g(k—1)

4. Isoparametric finite element discretization

In this section, a general nonlinear displacement-based finite element formulation is presented. The basic
steps in the derivation of finite element equations are to select the interpolation functions of the dis-
placements and the element coordinates. Because the new element coordinates are obtained by adding the
element displacements to the original coordinates in the incremental analysis, the same interpolations can
be employed for the displacements and coordinates. In the present study, 16-node quadrilateral elements
(Fig. 7) are employed because of their computational efficiency, as compared to their lower-order linear
counterparts, which are too stiff to model the shear deformation of each lamina in the laminate. The details
are available in Chaudhuri and Kim (1997), and are, therefore, omitted here in the interest of brevity of
presentation.

On computing the left and right sides of Egs. (4) and (8) as sums of integrals over the volume and areas
of all finite elements, followed by equating them, and incorporating the boundary conditions, the principle
of virtual displacement, in conjunction with the total Lagrangian formulation, is invoked to obtain the
incremental equations of motion as follows:

KL{oV} + [KnJ{oV} = {fL} — {fx}, ©)

Fig. 7. A 16-node curvilinear side surface-parallel quadratic isoparametric cylindrical shell element.
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It may be noted that the total number of elements, N equals Ny * Ns.

5. Iterative solution strategy

Because the nodal point forces at time ¢ + At depend nonlinearly on the nodal point displacements, it is
necessary to iterate for obtaining a reasonably accurate solution of Eq. (9). The most frequently used ite-
ration scheme for solutions of nonlinear finite element equations is the Newton—Raphson iteration because
reformations and triangularizations of stiffness matrices at selective load and iteration steps are more
computationally efficient without a significant loss of accuracy. In the Newton-Raphson method, only the
stress force vector (i.e., the right hand side of Eq. (9)) is modified without changing the stiffness matrix after
each iteration of a certain load step, and the following algorithm for solving Eq. (9) is developed:

([Ke] + KN V3 = Ay =2, (13)

t+At{V}(i) _ H'A[{V}(FI) + [A](i){OV}(i>, (14)

with the initial conditions {3 }” = *{/x}, and “4{V}¥ = {V}, where the index i denotes the number
of iterations performed in a certain time step Az. The subscripts ‘L’ and ‘N’ denote the linear and the
nonlinear components evaluated at the time ¢, while the diagonal matrix [4] is Aitken acceleration factor to
increase the convergence rate. Eq. (13) is the computational equivalent of Eq. (9). Furthermore, in the
computer program, the process of the assemblage for the total stiffness matrix can be divided into two
groups: the first group contains linear elements, where the stiffness matrices of each individual element are
only calculated at the first load step and remain unchanged during whole loading process. The second one
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refers to the nonlinear elements where nonlinear stiffness matrices of the element can be evaluated at the
first iteration of each load step with nonlinear force vectors being evaluated at each iteration of every load
step using the contributions of current displacements or stresses. The applied force and the stress force
vectors (i.e., "4{f.} and ’*A’{fN}(H> in Eq. (13)) are calculated according to Eq. (11) as follows:

t+At{fL} _ i /S( )([HAtBiA]CS)][HAtTé]]\{S)}[@])T{ HAZH(()NS“) }Prp(Nerl) tHArqg (15)
m=1 i
and
’”MW”=i§:ﬂf“WﬂwWW%W”mﬁwWW”wuw (16)
m=1 k=1 " gy
in which [+&B¥)) D earp®) 71 §s 4 linear differential operator of the kth layer evaluated at (i — 1)th ite-

ration of each load step. The 6 x 1 element stress vector {’+%’§(k)}(’;l) can be calculated by generalizing the
. . . (k) (i— — (k)4 (i— _ i— . o . . .

linear elastic relations, {** %’S< >}( D= [{)Q( )]( D {+arg®1 =Y (Hooke’s law in infinitesimal displacement
conditions) for the linear material because the second Piola—Kirchhoff stress and Green—Lagrangian strain
tensors are invariant under rigid body motions in large displacement and rotation. In the case of a non-
. . . —(k)~ (i— .

linear elastic material, the element stress vector {'* %’S( )}< D can be simply evaluated by subsequently
adding incremental stresses at each iteration to stresses calculated at the first iteration of the current load
step and denoted by

i—1
s = 590 3 (a5, (17)
=1

where {(S(k)}(0> is the total second Piola—Kirchhoff stress vector in an element of the kth layer at time ¢, and
{Ag(k)}(i) is the incremental stress vector created during the jth iteration. The first term on the right hand
side of Eq. (17) is equivalent to its counterpart in Eq. (5). Furthermore, the incremental stress can be
denoted by

{AE(’()}O) _ [6@(k>](i){Aé(k)}(/)7 (18)
where [{@(k)]m and {Aé(k)}(f) are tangent modulus matrix at the current load step and incremental strain
components generated during the jth iteration, respectively. It may be noted that the same procedure can be
applied to evaluate the 9 X9 element stress matrix [6§<k>] that appears in the nonlinear stiffness matrix of Eq.
(10b).

In actual computer programming, the active columns and the addresses of the diagonal elements of the
total stiffness matrix are stored effectively in an one-dimensional array, and an effective subroutine COL-
SOL (active column solver) is used to finally obtain the incremental displacement for the unbalanced force,
HAMARG-D) — trArf g 4 erAnf A0TD G the (i — 1)th iteration. The iteration is continued until the out-of-
balance load vector and the displacement increments are sufficiently small, i.e., the iteration scheme is
terminated at the current load step and moves to the next load step, when the force convergence criterion,

||t+At{fL} _ z+Az{fN}(i> H
[t =l

and the energy convergence criterion,

{OV}(i)T(t+At{fL} _ H—At{fN}(FH)
O ARGV ER V)

< & (193)

< & (19b)
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are simultaneously satisfied, where ¢ and ¢, are preset force and energy tolerances, while || - || denotes the
Euclidean norm of the column vector. The Newton—Raphson method with a relatively large value of the
load increment requires a number of iterations in the nonlinear regime. Otherwise, it may introduce serious
errors and, indeed, diverge from the exact solution. Therefore, a rather small load increment would be
necessary in the nonlinear regime. It may, however, be noted that the larger value of load increment is
recommended, with a specified accuracy, for the linear regime, in the interest of computational efficiency.

The prediction of nonlinear structural behavior by the Newton—Raphson method is successfully
achieved before the critical (limit) point of the solution, because the residual force vector and the gradient
of the total system matrix do not change in sign drastically; i.e., physically, the total stiffness matrix
monotonically decreases in the present investigation as the applied load is increased up to the limit load. In
practice, during the solution process of the system, the stiffness matrix may approach singularity at the
critical point, in which case the Newton-type method generally fails to give satisfactory results because of
the multiple admissible solutions for a single value of load. It is necessary to modify the standard form of
the Newton-type method, if it is employed to trace the post-buckling solution. The technique necessary to
modify this method, based on displacement increment, is therefore employed beyond the critical (limit)
point, which is shown to be efficient and reliable. The details of this important procedure are presented in
Appendix C.

6. Results and discussion

Before undertaking investigations on meso-structure-related instability problems, a class of simpler
macrostructural deformation and instability problems (e.g., isotropic and two layer [0/90] cylindrical panels
with linear material property) had earlier been investigated to check the accuracy of the present theoretical
development and the resulting finite element code, Nonlinear Laminated Shell Analysis with Meso-struc-
ture Program (NLSAMP). The issues of validity of the present LLDT based nonlinear incremental for-
mulation (developed earlier), and assessment of the convergence characteristics of the present 16 node layer
element were addressed for shallow homogeneous isotropic and cross-ply [0/90] panels in the absence of
imperfections. Also addressed was the issue of accuracy of the von Karman nonlinear strain assumption
which was found to overestimate transverse displacements in the advanced nonlinear regime. The results of
these studies are available in Hsia and Chaudhuri (1996), Kim and Chaudhuri (1995), and Chaudhuri and
Hsia (1998, 1999), and hence will not be repeated here in the interest of brevity.

Example: A thick symmetrically laminated cross-ply [9010/90] (plane strain) ring (infinitely long cylindrical
shell)

This study primarily addresses the problem of nonlinear (both geometric and material) post-buckling
behavior of a thick symmetrically laminated cross-ply [90/0/90] (plane strain) ring (infinitely long cylindrical
shell). First, the effect of a modal imperfection on the response of the laminated ring is presented (Chau-
dhuri and Kim, 1997), which serves as a baseline solution for comparison with that of a combined local and
modal imperfection. A modal or harmonic imperfection is generally given by

ro(0) = R; — Wy cos <Ri6>, (20)

qc

where ro(0) is the distance from the central axis of the perfect cylinder/ring to the inner surface of the
imperfect cylinder/ring, and ¢. is the wavelength of a classical buckling mode in the circumferential
direction. For mode 2 of classical buckling of a ring (see Fig. 8(b)), Eq. (20) reduces to

ro(0) = R; — Wy cos(20). (21)
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Fig. 9. Nomenclature and geometry of a (plane strain) [90/0/90] ring with a combined modal/local imperfection.

The geometry of the inner surface of a laminated ring with a modal imperfection, is described in detail in
Fig. 8(b), while Fig. 8(a) depicts the same with combined local/modal imperfections. The inner radius (R;)
and thickness (#) of the [90/0/90] cross-ply (plane strain) ring are 8.89 cm (3.5 in.) and 1.48 cm (0.583 in.),
respectively. The three-layer ring geometry with combined local/modal imperfections, of which the modal
imperfection is a special case, is described in detail in Fig. 9.

Fiber orientation angles 90° and 0° represent the hoop and axial directions, respectively, of the cylinder/
ring. The orthotropic lamina material properties for a Narmco 5605 graphite-epoxy composite under

compression are as follows (see Appendix C, Jones,

Ey = 124.11 GPa (18.0 Msi),
Gir = 5.86 GPa (0.85 Msi),

Err = 10.69 GPa (1.55 Msi),
Grr = 3.10 GPa (0.45 Msi).

1998):
VLT = 0575,
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Surface ABCD & EFGH: U=0
Surface ABFE & CDHG : V=0

Fig. 10. Finite element model of a [90/0/90] cylindrical ring.

The finite element model of a quarter of the plane strain (perfect) ring along with the prescribed boundary
conditions is presented in Fig. 10, the imperfect ones being similar with progressively more refined mesh
toward and in the vicinity of the localized dimple (not shown here). Double symmetry conditions permit
every model under consideration to be limited to only a quarter of the ring such that the corresponding
surface-parallel displacements vanish along the center lines and the buckled shapes are assumed to be
symmetric. As a result, a cylinder geometry with plane strain constraint has been chosen in the present
investigation, which has, in the absence of any geometric imperfection, an inner surface radius p") = R;.
Because the loading and geometric symmetries are assumed, boundary conditions on the surfaces in Fig. 10
can be prescribed as follows:

Geometric symmetry

on the surfaces ABFE and CDHG : (v(x,0,{) =0 and ov(x,7/2,{) =0, (22a)
on the surface EHGF :  u(0, $,{) = 0. (22b)

Loading symmetry

Traction force on the surface BCGF :  f5 = p(x, f, p™+D)ns 1), (23)

i

The plane strain condition in the three-dimensional model is obtained by applying the displacement con-
straints as shown below:

o = ) = ) = ) = ) = ) = ) = o) = ) = = ] = ol = ) =

= Ou(llg = 0u<12 = 0, (243.)
o =) =), o) =y = o) ol =) =, ol ==l ol = orf
OUYX = ovﬁ’z, (24b)
o) =l = ol o) =owly = ol ol = owf) =l ol = ol =onfl, o) = i
()W(li) = ()W(llé) (24C)

where the superscript, i, denotes element number.
Fig. 11 shows a plot of p*, the hydrostatic pressure, p, normalized by classical buckling pressure of its
perfect counterpart, p.;, versus the normalized displacement, w* = —w/(R; — wy) at 8 = 0°, of the thick
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Fig. 11. Computed equilibrium paths of a thick (R;/h = 6) composite [90/0/90] ring with only modal imperfection (wy = 0.005R;).

[90/0/90] ring (R;/h = 6, wy = 0.005R; and linear material property). This plot is the same as Fig. 13 from
Chaudhuri and Kim (1997), the ordinate axis of which was labeled wrong, which is corrected here.

Fig. 12(a) exhibits the variation of the normalized radial distance of the deformed inner surface,
R;(0) = Ry(0)(R; — wy), measured from the center of the ring during the initial pressurization process with
P = p/pmax In the range of 0-0.3157, which corresponds to the rising branch of the pressure-deflection
curve of Fig. 11. Fig. 13(a) exhibits the same variation just before and at the time maximum pressure is
reached, i.e., p** being in the range of 0.9914-1.0, which corresponds to the peak of the pressure—deflection
curve of Fig. 11, while Fig. 14(a) displays the same for the falling (unphysical) branch. Figs. 12(b), 13(b)
and 14(b) show through the thickness distribution of the circumferential displacement at three locations,
0 = 9°, 45° and 81°, respectively, along the circumferential direction of the same ring. At the initial stage of
loading, the maximum transverse deflection variation with the increase of load occurs around 0 = 0°, while
the corresponding nodal line of the deformed shape is maintained at 0 = 90° (Fig. 12(a)) in the case of the
thick cross-ply ring under investigation, which is in marked contrast with what happens in the case of a thin
cylindrical long shell (plane string ring), where the nodal line is located at 6 = 45°. This result implies that
the thick [90/0/90] ring is susceptible to deform locally even in the presence of a modal imperfection, e.g.,
out-of-roundness. On the other hand, the undeformed normal of each section located at 6 = 9°, 45° and 81°
along the circumferential direction of the thick [90/0/90] ring remains after deformation more or less

1.010 1.0
* p**=0 —&— @9 Deg
10051 —e— px=0.1177 08
}—e— @45De
& o 06 @45 Dee
+< 1.000 >
4 0.4 —®— @81 Deg
A
—o— p**=0.3157 |
0.990+ T y T T T y T y 0.0 o T y § T
0 10 20 30 40 50 60 70 80 90 0 15 30 45 60 75 90
(a) 0 (in Degrees) (b) o (Degrees)

Fig. 12. Displacement patterns (rising pressure) of a thick composite [90/0/90] ring along the circumferential direction (R;/h = 6.0,
wo = 0.005R;, linear elastic material): (a) normalized radial coordinate vs. angle and (b) normalized circumferential displacements vs.
angle.
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Fig. 13. Displacement patterns (near peak pressure) of a thick composite [90/0/90] ring along the circumferential direction (R;/h = 6.0,
wy = 0.005R;, linear elastic material): (a) normalized radial coordinate vs. angle and (b) normalized circumferential displacements vs.
angle.
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Fig. 14. Displacement patterns (falling pressure) of a thick composite [90/0/90] ring along the circumferential direction (R;/h = 6.0,
wo = 0.005R;, linear elastic material): (a) normalized radial coordinate vs. angle and (b) normalized circumferential displacements vs.
angle.

straight through the thickness as the applied hydrostatic pressure is increased (Fig. 12(b)). As the maximum
pressure is reached, the nodal line travels from 6 = 90° up to 6 = 50°, while the transverse deflection at
0 = 90° starts to increase slightly with the increase of the load (Fig. 13(a)). It is also evident from Fig. 13(b)
that the undeformed normal of each layer deforms linearly as before except around 6 = §1°. Finally, the
nodal line does not move further and both the sections, § = 0° and 6 = 90° deflects in the opposite
directions up to the ultimate point of the pressure—displacement plot (Fig. 14(a)). It is also seen that the first-
order shear deformation theory (FSDT) appears to be adequate to predict an accurate load—displacement
solution of the cross-ply composite (plane strain) ring with modal or harmonic imperfection and of linear
material property, because the circumferential displacement variation through the thickness remains more
or less linear during the whole loading process.

It may be noted that the computed deformed shapes of the composite [90/0/90] ring in the radial
direction shown in Figs. 12-14 earlier for different hydrostatic pressures (where the normalization with
respect to the maximum pressure, pmax, 1S used) reveal an absence of shear-crippling type post-bifurcation
localization of the deformation pattern, which will require additional consideration. Tvergaard and Nee-
dleman (1980, 2000) have studied the post-bifurcation localization process by introducing a small localized
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imperfection superimposed upon the modal type of imperfection. The initiation of the shear-crippling
process in a thick cross-ply ring is then a consequence of the occurrence of the limit (maximum) point in the
pressure (force)-deflection curve. Segments along the circumference of the ring, which are slightly weaker
than the rest, attain the maximum first and shear-cripple or kink under falling pressure, while the remainder
of the ring “‘unloads™ without shear crippling.

For the purpose of illustration, the afore-mentioned weakening effect is represented by the presence of
two symmetrically placed dimple type of imperfections superimposed upon the modal type imperfection
shown in Fig. 8(a) in a manner similar to Tvergaard and Needleman (1980, 2000). The initial imperfections
under consideration have (a) local shapes as well as (b) idealized modal shapes corresponding to classical
buckling modes for a ring. The radial coordinate of a ring with local imperfections is described as follows:

wo + wi exp{ - (R;G)ZH cos (izlcg), (25)

where #(0) is the distance from the central axis of the corresponding perfect cylinder/ring to the inner
surface of the imperfect ring with combined modal and local imperfections, while w; represents the am-
plitude and c is the extent of the local imperfection. For mode 2 of classical buckling of a ring (see Figs. 8(a)
and 9), Eq. (25) reduces to

Wwo + wy exp { — (R;H)ZH cos(20). (26)

It may be noted that the idealized modal imperfections, given above by Egs. (20) and (21) can be obtained
through substitution of w; = 0 and/or ¢ = 0 in Egs. (25) and (26), respectively. The arc length ¢ and modal
imperfection amplitude, wy, are kept here constants at 2.54 cm (1 in.) and 0.005R;, respectively.

The next set of results is concerned with the effect of material nonlinearity on the post-buckling and post-
yield response of the cross-ply [90/0/90] (plane strain) thick ring. Layer material lay-up is given in Table 1,
while the material nonlinearity is as shown in Fig. 15(a) and (b), providing nonlinear elastic property
corresponding to transverse shear modulus, Grr. Since a fiber-reinforced composite lamina is transversely
isotropic, the plane of isotropy being in the plane transverse to the fiber direction, this property is largely
matrix dominated. The material nonlinearity pertaining to Grr in graphite/epoxy and other composites,
therefore, appears to be nonlinear elastic (hypoelastic), with little residual strain observed. This nonlinearity
is described by setting the reference stress, Sz, = mGrr (see Appendix A for definition), j = 4 (no sum on j)
for a unidirectional (0°) lamina.

Fig. 16 shows the effect of normalized local imperfection, w** = w; /R;, on the post-buckling behavior of
a thick [90/0/90] composite ring with a fixed modal imperfection (wy = 0.005R;) and material nonlinearity
(m = 0.03, n = 3.0). The plots for the corresponding linear elastic material case (m = oo) due to Kim and
Chaudhuri (in review) are also shown here (by dashed lines) for the purpose of comparison. Each p* = p/p;
vs. w* = —w/(R; — wy) at O = 0° plot exhibits a limit point beyond which the equilibrium path is unstable.
The curve corresponding to w; = 0 (and/or ¢ = 0) represents nonlocalized solution, and is associated with
the periodicity of the classical (modal or harmonic) buckling pattern. It can be clearly seen from these plots

r(@) = Ri —

1”(0) = Ri —

Table 1

Material lay-up definitions of a laminated composite cylindrical shell
Lay-up Ey Epy Ey Gy Gy G
o=0° EiL Err Err GLr Gur Grr
o =90° Err ErL Err Gur Grr Grr

Material data with respect to the global coordinate (x, 6, () for different lay-ups.
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Fig. 16. Effect of local imperfection on the post-buckling behavior of a thick [90/0/90] ring (R;/h = 6.0, wy = 0.005R;) nonlinear (—)
shear modulus, Gt (m = 0.03, n = 3.0) and comparison with its linear (---) counterpart.

that material nonlinearity has a pronounced effect in lowering the maximum load carrying capacity of the
thick composite ring under investigation along with the amplitude of local imperfection. For example, the
load carrying capacity reduces down to 51.7% in the case of w** = 0.005 compared to the CLT based
linearized buckling load of the perfect cylinder. This result qualitatively explains the unacceptably low
failure external pressure for thick (R;/h = 6) [90,/0]m, m ~ 38, cylindrical shells in the 83 MPa (12 ksi)
range, that has experimentally been observed by Garala (1989), as compared to the computed value of 152
MPa (22 ksi). More quantitatively accurate comparison will require a massive computational effort in-
volving 114 layers, the actual modeling of the entire length of a laminated cylinder with statistically dis-
tributed local imperfections of fiber misalignments, resin rich areas, etc. over and above those pertaining to
the geometry considered here, which is beyond the scope of the present study.

With the increase of local imperfection amplitude, the limit load (hydrostatic pressure) decreases, and
also the limit point appears at an increased normalized deflection (Fig. 16). Additionally, the pressure—
deflection curves rise and decay more slowly. These curves tend to flatten to an undetermined lowest
pressure level, signaling even more rapid (compared to the linear elastic material case) onset of phase
transition in the localized region, and coexistence of two phases, i.e., a highly localized band of shear
crippled or kinked phase and its un-shear-crippled (unkinked) counterpart along the circumference of the
ring.
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Fig. 17(a) exhibits the variation of the normalized radial distance of the deformed inner surface,
R*(0) = R(0)/(R; — wp), measured from the center of the thick cross-ply ring (Ri/h = 6.0, wy = 0.005R;,
m = 0.03, n = 3.0) during the initial pressurization process with p** = p/pu.x being in the range of 0-0.3457,
which corresponds to the rising branch of the pressure—deflection curve of Fig. 16. Fig. 18(a) exhibits the
same variation just before and at the time maximum pressure is reached, i.e., p** being in the range of
0.9102-1.0, which corresponds to the peak of the pressure-deflection curve of Fig. 16, while Fig. 19(a)
displays the same for the unphysical falling branch. It is further observed from Fig. 17(b) that the inter-
laminar shear angle changes drastically from layer to layer through the thickness in a local region ranging
from 6 = 0° to 8 = 9° in the initial loading stage, e.g., p™* = p/Pmax = 0.0977. This phenomenon suggests
that formation of shear-crippling triggered by the combined effect of material nonlinearity and local im-
perfection at the meso-structural (i.e., lamina) level may be the dominant compressive failure mode for a
thick section composite ring, long before the occurrence of global or structural instability failure with an
associated periodic buckling pattern. A very low yielding stress or large local imperfection may be expected
to lead to this failure mode. As can be seen in Figs. 16, 17(a) and 18(a), the hydrostatic pressure continues
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Fig. 17. Displacement patterns (rising pressure) of a thick [90/0/90] ring (R;/h = 6.0, wy = 0.005R;) with nonlinear shear modulus, Gt
(m = 0.03, n = 3.0) along the circumferential direction: (a) normalized radial coordinate vs. angle and (b) normalized circumferential
displacement at three different angles.
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Fig. 18. Displacement patterns (near peak pressure) of a thick [90/0/90] ring (R;/h = 6.0, wy = 0.005R;) with nonlinear shear modulus,
Grr (m = 0.03, n = 3.0) along the circumferential direction: (a) normalized radial coordinate vs. angle and (b) normalized circum-
ferential displacement at three different angles.
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Fig. 19. Displacement patterns (falling pressure) of a thick [90/0/90] ring (R;/h = 6.0, wy = 0.005R;) with nonlinear shear modulus, Grr
(m = 0.03, n = 3.0) along the circumferential direction: (a) normalized radial coordinate vs. angle and (b) normalized circumferential
displacement at three different angles.

to increase with displacement and reaches the theoretical maximum point (pn,y). When the pressure reaches
its theoretical maximum point, the transverse deflection nodal line shifts to 8 = 50° (approx.), while the
layerwise variation of shear angle through thickness that results in shear-crippling pattern of circumfer-
ential displacement as well as dimple patterns of transverse deflection tends to delocalize or spread out
along the circumferential direction (Fig. 18(a) and (b)). This trend toward delocalization continues well
after the limit points (Fig. 19(a) and (b)) in the falling (non-physical) branches of the pressure—deflection
curves of Fig. 16.

In this connection, it may be worthwhile to mention that the theoretical limit point pressure, ppax, 1S
unattainable, because of the existence of an unstable equilibrium path that follows the limit point, and
which, as has been discussed earlier, results from the combined effect of local imperfection and/or material
nonlinearity. Consequently, it will switch to a localization mode, which is compatible with meso-structural
level deformation mode or pattern, followed by an approach to the onset of phase transition with a sig-
nificant drop of the load carrying capacity of the composite [90/0/90] ring under investigation. In analogy to
phase transition phenomena such as condensation of gases, the melting of solids, phenomena of ferro-
magnetism and antiferromagnetism, the famous family of lambda-transitions—e.g., order-disorder tran-
sitions in alloys, the transition from liquid He I to liquid He II (superfluidity of liquid helium at low
temperatures) or the transition from a normal to a superconducting material (superconductivity of metal at
low temperatures) and so on (Pathria, 1977) studied in condensed matter physics, this represents a long
range order (of nonlocal or gage theories) that is intimately connected with spontaneous symmetry
breaking. For example, there is a long range order in the ferromagnet—all the spins are lined up in the same
direction, resulting in spontaneous breaking of rotational invariance (Mattuck, 1976; Zee, 1995). In the
example problem studied here, localization of the deformation pattern is associated with spontaneous
breaking of the periodicity of classical (modal or harmonic) buckling patterns.

A qualitative understanding of the initiation of the shear-crippling (kink band) process can be obtained
by considering the relation of applied pressure acting upon a circumferential arc of half-length ¢, repre-
senting a local imperfection region, of a cylindrical section of unit axial length (force) to the deflection as
shown in Fig. 16. The qualitative argument for initiation of shear crippling in a thick cross-ply ring (in-
finitely long cylindrical shell) is similar to that for a number of localization phenomena—necking of a metal
bar in tension (Hutchinson and Neale, 1983), shear banding followed by necking in a polycarbonate bar
under tension (Lu and Ravi-Chandar, 1999), initiation of bulging in a party balloon (Chater and Hutch-
inson, 1984), and various kinds of phase transition phenomena mentioned earlier. The shear crippling is a
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phenomenon associated with localization of the post-buckling deformation pattern in a manner described
by Tvergaard and Needleman (1980, 2000).

In analogy to what is well-known in the phase transition literature, the slope of p* wvs.
w* = —w/(R; —wy) curves (Fig. 16), can never be negative. These curves represent iso-thickness-
shear states, which are analogous to isotherms of the phase transition literature. While in the absence
of any localized or dimple type imperfection, the slope may be expected to be positive until failure, the
presence of such defects, representing initial thickness shear strains, can cause a region with near-zero
slope to exist, whereby the structure may nearly lose its stiffness. The existence of such a region in the
p" vs. w* diagram corresponds to the coexistence of two phases, namely a highly localized band (of
half-width, ¢) of shear crippled phase and its un-shear-crippled counterpart in the rest of the ring. In
analogy to the phase transition phenomena, the dimple type imperfection may be treated as an impurity
or dopant. An understanding analogous to how impurities localize electron states in condensed mat-
ter (see Zee, 1995) is helpful for interpretation of the experimentally observed (see Chaudhuri,
1991; Garala, 1989; Garala and Chaudhuri, 1993) localization of shear crippled bands. The afore-
mentioned near-zero slope constitutes a direct evidence of the onset of phase transition in the system.

It is worthwhile to note in this connection that as long as one uses the exact geometry for modeling the
initial localized defects represented here by the dimple type imperfection, and exact constitutive relations,
such as nonlinear elastic (hypoelastic) behavior of Gtr of a unidirectional lamina employed here, the un-
physical region of negative slope in the p* vs. w* diagram would never appear. The appearance of such an
unphysical region in the present case is then a direct consequence of simplifying assumptions, that eliminate
the very possibility of the structural system passing through a state or region of flatness in the p* vs. w*
diagram, in which there coexist two phases of different transverse shear strains. This kind of discrepancy is
usually corrected by the Maxwell construction (e.g., equal areas in Fig. 13 of Chaudhuri and Kim, 1997).
Introduction of dimple type imperfection and nonlinear Grr in the present analysis has then eliminated the
need for employment of such an artifice as the Maxwell construction. This opens the door for the possibility
that under favorable conditions, such as the material nonlinearity and presence of severe localized (dimple)
type imperfection, which is the archetype of the class of localized defects, such as fiber misalignment defects,
resin rich areas etc. (Figs. 3 and 4), the equilibrium configuration of the externally pressurized composite
ring will involve a multi-phase—i.e., localized shear crippled (kinked) band and its un-shear-crippled
(unkinked) counterpart—state. It is further noteworthy that the observed microstructural ordering of the
shear-kinked fibers in a localized shear crippled or kinked band (see Chaudhuri, 1991) is analogous to long
range order that arises in the case of collective states of condensed media formed under phase transition of
the second kind, such as superfluidity of liquid helium, and the superconductivity and ferromagnetism of
metals, which exist only at temperatures below the critical temperature (see Mattuck, 1976; Popov and
Yarunin, 1988).

The above localized shear-crippling phenomenon may be called an interaction or meso-structural in-
stability type failure mode that results from a coupling between macro-structural (periodic or modal) and
micro-structural (kink band) instabilities, unless the material itself succumbs to the strength failure mode
before the occurrence of such interaction type failure mode. It is obviously seen that a three-dimensional or
quasi-three-dimensional theory, such as the LLDT is essential in order to capture the meso-structure-
related instability failure such as interlaminar shear crippling, triggered by the combined presence of local
imperfection and material nonlinearity.

7. Summary and conclusions

A fully nonlinear analysis for prediction of localization representing shear-crippling (kinkband) insta-
bility in a thick laminated composite (plane strain) ring (infinitely long cylindrical shell) is presented. The
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analysis accounts for both material (hypoelastic behavior) and geometric nonlinearities, the latter incor-
porating the completely nonlinear strain-displacement relations, in contrast to the commonly used von
Karman type nonlinear approximation. The fully nonlinear kinematic relations are employed in the present
study so that stable and unstable equilibrium paths in the advanced nonlinear regime can be accurately
predicted. The primary accomplishment of the present investigation is prediction of meso(lamina)-struc-
ture-related equilibrium paths, which are often unstable in the presence of local imperfections and/or
material nonlinearity, and which are considered to “bifurcate” from the primary equilibrium paths, rep-
resenting periodic buckling patterns pertaining to global or structural level stability of the thick cross-ply
ring with modal or harmonic imperfection.

A special purpose nonlinear finite element computer code, referred to as NLSAMP, is developed to
predict the afore-mentioned deformation/instability behavior of laminated shell type structures and
evaluate failure modes when hydrostatic compressive loads are applied. The present nonlinear finite
element solution methodology, based on the total Lagrangian formulation, employs a quasi-three-
dimensional hypothesis, known as the LLDT to capture the three-dimensional interlaminar (especially,
shear) deformation behavior, associated with the localized interlaminar shear-crippling failure. A cur-
vilinear side layer element with 8 nodes each on the top and bottom surfaces of a layer has been im-
plemented to model the quasi-three-dimensional interlaminar deformation behavior, represented by the
LLDT. The most important computational feature of the NLSAMP is successful implementation of an
incremental displacement control technique combined with an incremental force control scheme, during
the solution process.

A thick laminated composite [90/0/90] imperfect (plane strain) ring is investigated with the objective
of analytically studying its premature compressive failure behavior. In order to investigate local-
ization of the buckling pattern, a local or dimple shaped imperfection superimposed on a fixed modal
or harmonic one is selected. What follows is a list of useful conclusions drawn from the numerical
results:

(1) Numerical results suggest that interlaminar shear/normal deformation (especially, the former) is
primarily responsible for appearance of a limit (maximum pressure) point on the post-buckling equilibrium
path associated with a periodic (modal or harmonic) buckling pattern, for which a modal imperfection
serves as a perturbation. Localization of the buckling pattern results from bifurcation at or near this limit
point.

(i1) With the increase of local imperfection amplitude, the limit load (hydrostatic pressure) decreases, and
also the limit point appears at an increased normalized deflection.

(iii) Material nonlinearity has a pronounced effect in lowering the maximum load carrying capacity of
the thick composite ring under investigation along with the amplitude of local imperfection. The dis-
placement corresponding to maximum pressure is also delayed with the imperfection amplitude as in the
linear elastic material case.

(iv) When the pressure reaches its theoretical maximum point, the transverse deflection nodal line shifts
to 6 = 50° (approx.), while the layerwise variation of shear angle through thickness that results in shear-
crippling pattern of circumferential displacement as well as dimple patterns of transverse deflection tends to
delocalize or spread out along the circumferential direction.

(v) The pressure—deflection curves tend to flatten (nearly zero slope) in the presence of material non-
linearity and with the increase of the amplitude of localized (dimple) imperfection, to an undetermined
lowest pressure level, signaling the onset of phase transition in the localized region, and coexistence of two
phases, i.e., a highly localized band of shear crippled (kinked) phase and its un-shear-crippled (unkinked)
counterpart along the circumference of the ring.

(vi) The computed theoretical limit point pressure is unattainable, because of the existence of an
unstable equilibrium path that follows the limit point, and which results from the combined effect of
local imperfection and/or material nonlinearity. It will switch to a localization mode, which is com-
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patible with meso-structural level deformation mode or pattern, followed by an approach to the onset
of phase transition with a significant drop of the load carrying capacity of the composite [90/0/90]
ring under investigation. In analogy to phase transition phenomena in condensed matter physics, this
represents a long range order (of nonlocal or gage theories) that is intimately connected with
spontaneous symmetry breaking. In the example problem studied, localization of the deformation
pattern is associated with spontaneous breaking of the periodicity of classical or modal buckling
patterns.

(vii) Introduction of dimple type imperfection and nonlinear Grr in the present analysis eliminates the
need for employment of such an artifice as the Maxwell construction. This opens the door for the possibility
that under favorable conditions, such as the material nonlinearity and presence of severe localized (dimple)
type imperfection, which is the archetype of the class of localized defects, such as fiber misalignment defects,
resin rich areas, etc., the equilibrium configuration of the externally pressurized composite ring will involve
a multi-phase—i.e., localized shear crippled (kink) band and its un-shear-crippled (unkinked) counter-
part—state.

(viii) The observed micro-structural ordering of the shear-kinked fibers in a localized shear crippled or
kinked band is analogous to long range order that arises in the case of collective states of condensed media
formed under phase transition of the second kind.

(ix) Onset of the interlaminar shear-crippling (kinkband) type instability, which represents an inter-
action or meso-structural instability type failure mode that results from a coupling between macro-
structural (periodic or modal) and micro-structural (kink band) instabilities, and is triggered by the
combined effect of material nonlinearity and local (e.g., dimple) imperfection at the meso-structural (i.e.,
lamina) level appears to be the dominant compressive failure mode. Structural (periodic) buckling or
limit load can be attained, only if the lamina material can survive this meso-structure-related instability
failure.

(x) Although the FSDT appears to be adequate for prediction of an accurate load—displacement solution
and macrostructural level buckling of a cross-ply cylindrical shell made of a linear elastic material and with
modal imperfection, a quasi-three-dimensional theory such as the LLDT is essential to capture the meso-
structure-related instability failure such as localized interlaminar shear crippling, triggered by the combined
presence of local imperfection and material nonlinearity.
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Appendix A. Constitutive relations for an orthotropic lamina

Taking into account nonlinear elastic (hypoelastic) behavior (as opposed to plasticity) and neglecting the
thermal and hygrothermal effects, the incremental strain-stress relations of the kth orthotropic lamina in
terms of the principal material directions (x, f5,z) are given as follows:
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In the above equation, the compliance matrix components X;’s can be approximated analytically by the
method of Ramberg and Osgood (1934) who have suggested that rising stress—strain curves with a smooth
knee be represented by the relation

1 3 (4ps\"
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Ji Rjj
and
Iy = vy, E = s, s = (A.2b)
where E/(f) and 6S](-f) denote elastic (Young’s or shear) moduli and stress components at time ¢, respectively,

of the kth lamina material, while v{%, v(llg) and v(;;) represent major Poisson’s ratios in the x—f, x—z and f—=z

planes (surfaces), respectively, of the same. Details of nomenclature and property definitions of the non-
linear (hypoelastic) composite material are shown in Fig. 6.

o ; i g )~ (o)
The stress Sg;; is defined as the stress at which Eg;; = (ij ) =0.7E;,

The exponent n, known as the hardening parameter, is found from the expression for the secant modulus
thus defined:

where Eé’;j is the secant modulus.
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where S;k) is the stress at Eg’;j = O.85E§f). It may be noted that the linear elastic and the perfectly elastic—

plastic cases can be obtained by substituting Sg;; = oo and n = oo, respectively, into Eq. (A.2). The con-
stitutive relation for each lamina can be obtained by inversion of Eq. (A.1) as follows:
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Q(j ,i,j=1,...,6, the components of the corresponding incremental stiffness matrix of an off-axis lamina,
made of a hypoelastlc composite material, can be obtained from Q via standard transformation rule.

Appendix B. Definition of certain matrix operators

The differential operators, [B\")], [B%]] and [B\)], are as presented below. The matrix [B\] referred to in
Egs. (10a), (10b) and (11b) is given as

T8 0 0
a 1 o 1
0 10 1
@ 3 @
AR
0 0 =
3
BY| = a1 1%s (B.1)
LL 0 - |
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where the components of the vector {v* } are known displacements at time . The matrix {Bg‘N} referred to
in Egs. (10b) and (B.3) is given as follows:
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The layerwise linear distribution of displacement matrix, [Tgr|, referred to in Eqgs. (10) and (11) can be
written as follows (see Kim and Chaudhuri, 1995):
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The quadratic global interpolation function matrix, [@], referred to in Egs. (10) and (11) is given by
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wherein
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and {0} is 1x8 null matrix. y,(r,s), k =1,...,8, are the shape functions as used for displacements and
coordinates.

Finally, the stress matrix, [6@,-,], and stress vector, {{S,-j}, referred to in Egs. (10b) and (11b), respectively,
are given as follows:

n bS] [0]  [0]
oSyl =1 [0] [sT [0 |, (B.10)
[0]  [0] [6S"]
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0S13]  [6S23]  [6S33]
and
{(t)gij}T:{(t)Sll 082 6833 681 6Si3 6812} (B.12)

Appendix C. Incremental displacement control technique

In the event of a displacement increment, (¥, being specified at a load step, ¢ to 7 + At, instead of varying
the load parameter, the gth component of the total displacement vector at the first iteration of the time step
¢ to ¢ + At, is incremented by (¥, while the initial solution vector 4/{ V1% is redefined as

r+Ar{V}(0) ="V}, (C.1a)

a0 — (C.1b)

where the qth component of the total displacement at time ¢ + A¢, V ="V, +oV,, while the scalar
quantity "4, represents the initial load level that is calculated at the preV1ous time step. The Newton—
Raphson method introduced in calculating prebuckling solution is employed to obtain the unknown in-
cremental displacement vector and the corresponding force vector with (¥, considered as fixed during an
iteration. The modified algorithm (see e.g., Batoz and Dhatt, 1979) for solving Eq. (9) then becomes

([Ke) + ' [Kx]) {oR}Y = A 1Y, (C.2a)
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([KL] + &) {oQ1 ) = 4L ), (C.2b)

where 2 {f\}*"" is the residual vector (i.e., nonlinear force vector) evaluated at the (i — 1)th iteration of
the time step, ¢ to ¢ + Az, while “"2{f L;» is the applied load vector that is assumed to be proportional for each
time step, which is multiplied by (A" to obtain the actual load corresponding to the prescribed displace-
ment. The quantities {OR}U) and {OQ}(i) are incremental displacements due to the residual force vector and
the applied load vector respectively. The complete solution of Eq. (14) is now defined by

z+Az{V}(i) _ r+Ar{V}<i*1) + {OV}(i), (C.3a)

{OV}(I') _ {OR}(i) + 0)L<i){0Q}(i)- (C.3b)

The value of incremental load scale factor, (/" can be obtained as follows, reflecting that the gth com-
ponent of the incremental displacement (i.e., 01{;”) is set to zero during iteration:

oRf][)
%
00y

where R and Q" are the gth components of vector {oR}” and {,Q}", respectively. In the present in-
vestigation, the total stiffness matrix in Eq. (C.2) is not calculated at each iteration but calculated and
factorized at each time step. It is implicitly assumed that the total stiffness matrix remains non-singular at
any solution level. Theoretically, if a certain displacement solution corresponds to a critical or singular
point, the total stiffness matrix will be singular. However, in practice, it is nearly impossible to obtain a
solution vector exactly corresponding to a singular point, due to a large number of components of “+4/ {V}(D
and possible round-off errors. The above-mentioned algorithm for solving Eq. (C.2) is, therefore, utilized in
this investigation without the problem of singularity of the total stiffness matrix encountered. In a situation
where the matrix is singular, the previous algorithm should be modified to avoid the singularity in a manner
suggested by Zienkiewicz (1971) and Thomas and Gallagher (1975). Furthermore, neither the stiffness
matrix need to be reorganized into partitioned form nor the sky-line and bandwidth of the stiffness matrix
should be destroyed in the present investigation. Only two different load vectors (i.e., ’*A’{fN}(’;l) and
HALLf 1 in Eq. (C.2) are involved, which are back-substituted in the subroutine COLSOL to calculate the
incremental displacements simultaneously.

oA = (C.4)
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